
10. File I/O

Background
In this lab we will look at a few aspects of File I/O and discuss the differences between structured
and unstructured files. An unstructured file typically refers to a file that is simply a collection of
bytes with no meanings to particular byte offsets within the file. A text file is an example of an
unstructured file (contains ASCII data). In a structured file, individual bytes or groups of bytes
are meant to contain defined data items such as characters, integers, strings, floating point
numbers etc, with the ordering of the fields always the same for files of that particular type. The
PC world contains many examples of structured files; .BMP (bitmap files) and .WAV (sound
files) are two examples of structured files.

Objectives:

Understand:

A. Basic file open/read operations

B. Difference between ASCII files (unstructured) and Binary Files (structured)

Pre-Lab
Make sure that you read this this entire lab before you attend class.

Lab

A. Reading an ASCII File
The program below (fdmp.asm) illustrates how to open a file for reading and read the contents of
the file. The file is then dumped to the screen as ASCII data.

.model small

.586

.stack 200h

.data
fname db 128 dup (0)
filehandle dw 0

BUFSIZE equ 256
buffer db BUFSIZE dup (?)
msgFileErr db "Error opening file.",0
msgFileReadErr db "Error reading file.",0

.code
 extrn Crlf:proc, Writestring:proc

main proc
 mov ax,@data
 mov ds,ax

 mov di,offset fname
 call getfname ; get filename from DOS command line

 mov dx,offset fname
 mov al,0 ; AL=0 means open for reading
 mov ah, 3Dh ; file open
 int 21h
 jc FileErr ; Error? Display error message and quit
 mov filehandle,ax ; save the filehandle

 ;; read first BUFSIZE bytes in file
 mov ah,3fh
 mov cx,BUFSIZE ;number of bytes to read
 mov dx,offset buffer
 mov bx,filehandle
 int 21h
 jc FileReadErr

 mov cx,ax ; save number of bytes actually read in CX
 mov bx,offset buffer
;; print all characters that were read
lp1:
 mov dl,[bx]
 mov ah,2
 int 21h
 inc bx
 loop lp1

 mov bx,filehandle ;get filehandle back
 mov ah,3Eh ; close file
 int 21h

 jmp mainexit

FileReadErr:
 mov dx, offset msgFileReadErr
 call Writestring
 jmp mainexit

FileErr:
 mov dx,offset msgFileErr
 call Writestring

mainexit:
 Mov ax, 4c00h ;exit to DOS
 Int 21h
main endp

getfname proc
 ;; copy filename from DOS command line to ds:di
 push ds
 push ds
 pop es ; set ES to DS
 mov ah,62h
 int 21h ; get address of program segment prefix
 mov ds,bx
 mov si,80h
 mov cl,[si] ; get character count of cmd line args
 cmp cl,0
 je getfname_exit ; exit if no filename
 inc si ; point at first character
getlp1:
 mov al,[si]
 cmp al,20h ;space?
 jne getsk1
 inc si
 dec cl
 jmp getlp1
getsk1:
 cld
 rep movsb
 inc di
 mov al,0
 mov [di],0 ; null terminate
getfname_exit:
 pop ds
 ret
getfname endp

end main

This program opens the file whose pathname is passed on the DOS command line, reads the first
BUFSIZE bytes from the file, and sends these bytes to the screen as ASCII data.

How does this program work?

1. The procedure getfname copies the filename passed on the DOS command line to the
buffer pointed to by DS:DI. We could have hard-coded the pathname in the program (as
was done for the previous lab) but this is more convenient for testing with multiple files.
An example command line would be : "c:\data\fdmp c:\data\test.txt" where 'test.txt' is
the file to open. Notice that you must specify the complete pathname to the file (if you
don't use the complete pathname, you will get a DOS subsystem error). The DOS
command line arguments are stored in a structure called the Program Segment Prefix
whose segment address is returned in BX via the DOS Int 21h, AH=62h call. The number
of characters after the command line is at offset 80H, the characters follow at offset 81H-
127H. The program calls getfname with DS:DI pointing at the buffer labeled as 'fname'.

2. The DOS function 21h, AH=3Dh is used to open the file. The filename must be passed to
this function via DS:DX. The file can be opened for reading (AL=0), writing (AL=1) or
read/write (AL=2). The carry flag will be set SET upon return if an error occurred. If no
error occurred, then the filehandle for the file is returned in register AX. This filehandle
must be used for all subsequent operations to the file.

3. The DOS function 21h, AH=3Fh is used to read data from the file. Register CX specifies
the number of bytes to be read, DS:DX points to the input buffer where the bytes are to
be stored, and BX = filehandle. The carry flag is set on return if an error occurred. If no
error occurred, then AX will contain the actual number of bytes read (AX will not be
equal to CX if the file has fewer than CX remaining bytes in it). Each file read starts
where the last file read stopped.

4. The program uses a loop to print the data that was read to the screen using the DOS
function 21h, AH=1.

5. The file is closed via the DOS function Int 21h, AH=3Eh. Register BX contains the
filehandle for the file to be closed.

Note that the program prints out an error message and exits if one of the file functions returns an
error. This is important - the program should not continue execution if a file error occurs.

Lab Question 1: Assemble the program and execute it using any text file that you want (such as
the fdmp.asm file itself). Modify the program so that all of the characters in the file are sent in the
screen. Do not change the buffer size; you will need to change the loop so that the program loops
until no more characters can be read from the file. When dumping the characters to the screen,
pause the character listing if a space character is entered, resumed if the space bar is hit again.
Include the assembled listing of this program in your lab report.

B. Structured files
The WWW page for this lab contains links to five structured files (fmt0.dat, fmt1.dat, fmt2.dat,
fmt3.dat, fmt4.dat) that have the following file structure:

1. Byte 0: format type. Valid values are 0,1,2,3,4.

2. Bytes 1,2: an unsigned 16-bit integer that specifies the number of data records in the
file. The integer is stored in little-endian order (least significant byte first).

3. Bytes 3 to end of file are the data records. For type 0, a data record is simply a single
byte. For type 1, each record is a 16-bit (2 byte) integer, stored in little-endian order. For
type 2, each record is a 16-bit (2 byte) integer, stored in big-endian order. For type 3,
each record is a 32-bit (4 byte) integer, stored in little-endian order. For type 4, each
record is a 32-bit (4 byte) integer, stored in big-endian order.

4. The number of bytes in a file can be calculated as 1 + num_records * bytes-per-record.

The program 'axe.exe' on the Micro I lab PCs is a binary file editor that you can use to examine the
contents of these files (axe.exe is also available for download from www.zdnet.com as part of the
archive advhexed.zip). You should examine the contents of the files to make sure that you
understand the format structure.

Lab Question 2: Write a program that will dump the contents of any file that follows the above
format to the screen. The output for your program should look something like (output shown for
each possible file type):

Fname: fmt0.dat
Format type: 0, Record length: 22
Data:
67 ('g')
6f ('o')
6f ('o')
64 ('d')
62 ('b')
79 ('y')
65 ('e')
20 (' ')
63 ('c')
72 ('r')
75 ('u')
65 ('e')
6c ('l')
20 (' ')
77 ('w')
6f ('o')
72 ('r')
6c ('l')
64 ('d')
2e ('.')
2e ('.')
2e ('.')

Fname: fmt1.dat
Format type: 1, Record length: 7
Data :
000c ('12')
0022 ('34')
0041 ('65')
0022 ('34')
044c ('1100')
0e10 ('3600')
fb60 ('64352')

Fname: fmt2.dat
Format type: 2, Record length: 7
Data is :
000c ('12')
0022 ('34')
0041 ('65')
0022 ('34')
044c ('1100')
0e10 ('3600')
fb60 ('64352')

Print the 16-bit values as both hex values and as unsigned decimal integers using the Irvine
Writeint function. For the 32-bit values, you only need to print them in hex. To make it easier,
you can make your file buffer 8K bytes and assume that you will never be passed a file larger than
this (i.e., read all of the bytes from the file at one time). If your program is passed a file whose
format byte is not in the range 0 to 4, print an error message. Also do error checking on file open
and file reading as in the first example program.

Two perl scripts are also linked to the WWW page for this lab. The script 'mkfile.pl' can be used
to create new test files in these formats (to see how to use this program, type 'perl mkfile.pl' on a
UNIX machine and read the usage information). The script 'dpfile.pl' can be used to dump the
contents of a file that follows these formatting rules.

Included an assembled, commented listing of your program in the lab report.

Lab Report

A. Describing What You Learned
Include the answers to all "Lab Questions" in your report.

B. Applying What You Learned
Demonstrate the programs you wrote for Lab Questions 1 and 2 to the TA. The TA may test your
programs with data files that are different from the examples on the WWW page.

Fname: fmt3.dat
Format type: 3, Record length: 6
Data :
0000000c
fffffffe
00233fd5
000001c8
00010000
fffabacf

Fname: fmt4.dat
Format type: 4, Record length: 6
Data :
0000000c
fffffffe
00233fd5
000001c8
00010000
fffabacf

