
11. Interrupts

Background
Two major uses of interrupts are:

1. Scheduling regularly occurring actions -- for example, multi-tasking operating systems
uses a timer interrupt to share CPU time between different tasks.

2. I/O handling – interrupts are more efficient at handling sporadically occurring
input/output than polling methods.

This lab examines both types of interrupts.

Objectives:

Understand:

A. How to write interrupt service routines.

B. Gain experience with the BIOS timer interrupt.

C. Gain experience with event-driven I/O by writing an event handler for the mouse.

Pre-Lab
Review lecture notes on polled versus interrupt driven I/O. Also, review chapter 9 (Interrupt
Driven I/O in the Uffenbeck text).

1. What is an interrupt service routine?

2. We will be using the BIOS user timer interrupt which has an interrupt number of “1Ch”.
What is the physical address in the interrupt vector table for this interrupt number?

3. What is the difference between iret and ret? What would happen if I used an iret instruction
for a normal procedure return?

Lab

A.
The program below (inttst.asm) illustrates how install an interrupt service routine for the BIOS
user-timer interrupt 1Ch.
.model small

 .586
 .stack 200h
 .data

oldvec dd 0 ;; old interrupt vector

.code

main proc
 mov ax,@data
 mov ds,ax

 mov ah,35h
 mov al,1Ch ;; get old interrupt vector for timer
 int 21h ;; returns in ES:BX
 mov word ptr [oldvec],bx ;; save offset
 mov bx,es
 mov word ptr [oldvec+2],bx ;; save segment

 mov ah,25h
 mov al,1Ch ;; use timer interrupt
 mov dx,offset mytmr
 push cs
 pop ds
 int 21h ;set new 1C interrupt

 mov ax,@data
 mov ds,ax
 ;; do wait...
 mov cx,1000
 call mywait

 ;; restore old interrupt vector before exit
 mov dx,word ptr [oldvec]
 mov ax,word ptr [oldvec+2]
 push ax
 pop ds
 mov ah,25h
 mov al,1ch
 int 21h

 ;; now exit
 Mov ax, 4c00h ;exit to DOS
 Int 21h

main endp

 mytmr proc
 pushad ;; save all registers (32-bit)
 mov ah,2
 mov dl,'A'
 int 21h
 popad ;; pop all registers (32-bit)

 iret

 mytmr endp

 ;; my wait now uses stack for storage, so reentrant.

 CLKFREQ EQU 800 ; clock frequency in MHZ
 TICS_MS EQU CLKFREQ*1000
 ;; will delay # of milliseconds specified in CX. Register CX destroyed

 mywait proc
 push eax
 push edx
 enter 8,0 ;reserve 8 bytes on the stack
 ;for timer value
 mywaitlp2:
 call timget
 mov [bp-4],eax ;; save low value
 mov [bp-8],edx ;; save high value
 mywaitlp1:
 call timget
 sub eax,[bp-4] ;; subtract low value
 sbb edx,[bp-8] ;; subtract high value
 ;; edx:eax has delta time. Compare to TICS_MS
 sub eax,TICS_MS
 sbb edx,0
 jc mywaitlp1
 loop mywaitlp2
 leave
 pop edx
 pop eax
 ret
 mywait endp

;;; procedure that returns the Pentium+ 64 bit timer value
;;; in EDX:EAX

 timget proc
 rdtsc ;; read timestamp counter
 ret
 timget endp

 end main

The software interrupt 1Ch is called by the BIOS interrupt timer service routine (int 08h) which is
triggered 18.2 times/second. Normally, interrupt 1Ch is an empty subroutine but can be replaced
by a user-defined subroutine. The above program installs the procedure mytmr as the ISR for
interrupt 1Ch, and then waits for 1 second before exiting. This allows the mytmr function to
execute approximately 18 times.

How does this program work?

1. The DOS function 21h, AH=25h can be used to set the value for an interrupt vector table
entry. Register AL must specify the interrupt number, and DS:DX must point to the
Interrupt Service Routine (ISR). The main procedure uses this function to install mytmr
as the ISR for interrupt 1Ch. Before setting the new interrupt vector for interrupt 1Ch,
the old interrupt vector for interrupt 1CH is first read via the DOS function 21h, AH=35h
and stored at the memory location oldvec (segment/offset of vector is returned in ES:BX
by int 21h, AH=35h). Before the program exits, the old vector stored at oldvec is
restored for interrupt 1Ch by using DOS interrupt 21h, AH=25h.

2. The procedure mytmr prints one character (‘A’) to the console using the DOS 21h,
AH=02 function before exiting. It is important for an ISR to save any registers that it
uses, and to also use an IRET to return from the interrupt. The mytmr functions uses the
instruction PUSHAD to push all 32-bit registers on the stack, and POPAD to pop all 32-
bit registers off the stack. This is probably overkill because the DOS 21h function don’t
use any 32 bit registers – the instructions PUSHA/POPA (16 bit registers) would have
been sufficient.

Lab Question 1: Assemble this program and execute it.

A. How many ‘A’s get printed to the screen? (be sure that you modify the CLKFREQ
equate to match your system).

B. Modify the main procedure such that it loops printing ‘A’s to the screen – exit the main
procedure when any key is pressed. Modify the mytmr procedure such that a digit ('0'-'9')
is written at cursor location row=0, col=79 ; have the digit change each time the mytmr
procedure is called such that the value cycles through '0' to '9'. You will need to use the
appropriate BIOS 10h functions to read the current cursor position; position the cursor at
0,79; write the digit; and then restore the cursor position to its original location. Do not
forget to save all registers in your mytmr procedure -- you may also need to save the DS
register if you access your data segment from within the mytmr procedure. Include the
assembled listing of this program in your lab report.

B. Interrupt Driven I/O
Interrupt driven I/O means that a device generates an interrupt whenever it has generated new data
(input) or requires additional data (output). All of the I/O devices on the PC (keyboard, mouse,
video, serial/parallel ports, etc) support some form of interrupt driven I/O. This type of I/O is also
termed 'event-driven' I/O and the interrupt routine is called an 'event handler'.

The mouse is a good candidate for interrupt I/O since mouse clicks are an infrequent occurrence
when compared to other I/O events in the system. The BIOS 33h, AX=0Ch function provides a
way for a user to install a user procedure that is called on mouse events. An event mask is passed
to this function that defines what events will generate a call to the user procedure. The event mask
is passed in CX, and each bit defines different events. A bit value should be a '1' if the procedure is
to be called when this event occurs. The bit definitions are:

1. Bit 0 (LSB): cursor position changed

2. Bit 1 : left button pressed

3. Bit 2: left button released

4. Bit 3: right button pressed

5. Bit 4: right button released

6. Bits 5 through 15: Unused

For example, if the user procedure is to be called each time the right button is either released or
pressed, then CX should be the value : 00018h. The BIOS 33h, AX=0CH function expects
ES:DX to point to the user procedure. The user procedure is called from the mouse interrupt
service routine, so it should use a normal 'RET' instruction. The procedure must be declared as
'proc far' because the call is made using a FAR call (both CS,IP pushed on stack). The '.model
medium' model statement must be used in order to declare a 'proc far' procedure.

When the user procedure is called, the registers have the following values:

1. AX: condition mask causing the call

2. CX,DX: horizontal, vertical mouse coordinates

3. DI,SI : horizontal, vertical counts (you can ignore these)

4. DS points to the mouse driver data segment

5. BX contains the button state. Bit 0 is a '1' if the left button is pressed, Bit 1 is a '1' if the
right button is pressed. Bits 15-2 are unused.

The user procedure should preserve all register values the same as any interrupt service routine.

Lab Question 2: Modify the hline.asm example from Lab #9 such that it uses interrupt events to
detect button press/release. This means that the main program should install a user defined routine
for mouse events, then enter a loop waiting for an key to be pressed to exit the program. All the
work of recording the mouse position, drawing the line, etc. will be done from your user-defined
mouse event handler. Be careful - if you change the DS (data segment) register to point to your
own data segment, it must be restored to its original value before your routine exits.

Lab Report

A. Describing What You Learned
Include the answers to all "Lab Questions" in your report.

B. Applying What You Learned
Demonstrate the programs you wrote for Lab Questions 1 and 2 to the TA.

