
1 

12.  Floating Point Operations, Instruction 
Timing 

Background 
One of the goals of this lab is experiment with floating point operations on the x86.  Hardware 
support for floating point operations is included on every modern CPU as they are a necessity for 
many applications.  NOTE:  The in-class lecture may or may not have covered the details of x86 
floating point operations by the time you take this lab.  However, do not stress over this - the lab 
looks at very simple uses of the floating-point instructions  

"All men are created equal" is a truth that Americans hold to be self-evident.  Substitute 
"instructions" for "men" and  "All instructions are created equal" is not self-evident -- in fact - the 
statement "All instructions are created equal, except some instructions are more equal than 
others±" is closer to the truth.   In many cases, one reason for going to the trouble of writing 
something in assembly code is for performance -- and in order to write high performance code you 
need to understand which instructions or instruction sequences are fast or slow.  This lab looks at a 
method for timing x86 instruction sequences to help you understand which instructions are slow or 
fast in terms of execution speed.  

Objectives 

Understand: 

A. Simple uses of the x86 floating point instructions.  

B. Differences in execution time of various instruction types. 

 

Pre-Lab 
The basics of floating point operations are covered very well in the Irvine textbook, Chapter 15.  
Be sure to read this chapter before attempting this lab.  Also read the online lecture notes 
concerning the IEEE floating-point number format.  

±Read George Orwell's Animal Farm if you get a chance. 



2 

 

Lab 

A.   x86 Floating Point Operation 
The program below (fpexam.asm) illustrates some simple uses of the x86 floating point 
instructions.  
.model small 

 .586 
.stack 200h 

  
.data 
fres dd  ?    ;; floating point result 
op1 dd 2.789 
op2 dd 12.1 
op3 dd 3.141592654 
op4    dd 5.0 
op5 dd 1.570796327 

  
 

rstring db "Float Result is: ",0 
ares db 30 dup (?) 

 
 
.code 

;; ftoa procedure found in 'float.lib'   
 extrn ftoa:proc, writestring:proc, crlf:proc 
 

main    proc 
  mov     ax,@data 
  mov ds,ax 
  finit 
  fld op1 ;; load into st0 
  fld op2 ;; load into st1 

A1: fdiv            ;; st1 = st1/st0, pop stack so st1 goes into st0 
  fstp fres ;; save single result as single precision 
    ;; pop stack also 
  call fprint 
  fld op3 

B1: fmul    op4     ;; st0 = st0 * operand, no stack pop 
 fstp fres 
 call fprint 
 fld op3 
C1: fsqrt  ;; square root of pi 

  fstp fres 
  call fprint 
  fld op3 

D1: fsin  ; sin  (pi) 
  fstp fres 
  call fprint 
  fld op3 

E1: fcos  ; cos (pi) 
  fstp fres 
  call fprint 
  ;; 
  Mov ax, 4c00h ;exit to DOS 
  Int 21h 
 

main endp 
 



3 

fprint  proc 
 
  mov dx,offset rstring 
  call writestring 
  mov ax,word ptr fres 
  mov dx, word ptr fres+2 
  mov cx, 10 ;; 10 digits of precision 
  mov di,offset ares 
  call ftoa 
  mov dx,offset ares 
  call writestring 
  call crlf 
  ret 

fprint  endp  
end     main 
 
    

The program does the following floating-point operations: divide, multiply, square root, sine and 
cosine.  The operands come for the single precision floating point values labeled as op1, op2, op3, 
and op4.  The result of each operation is printed to the screen using the fprint procedure.  

How does this program work? 

1. The finit instruction initializes the Floating Point Unit (FPU).  The FPU has 8 registers 
named ST0-ST7 and which are arranged as a stack. Register ST0 is the top of the stack.  

2. The instructions "fld op1" and "fld op2" loads operand op1 into register ST0, and op2 
into register ST1.  Note that op1 and op2 are stored in memory as 32-bit values (single 
precision floating point numbers).  In order for MASM to generate a floating point format 
instead of using an integer, you MUST use a decimal point in the number when 
specifying its value (ie.  op1   dd   2.0     -- use a decimal point even if the fraction is 
zero). 

3. The fdiv instruction (no operand format) does a divide operation ST1 = ST1/ST0, and 
then pops the stack. This means that ST1 goes into ST0, and that ST1 becomes empty. 
After the FDIV instruction, the result is sitting in register ST0. 

4. The "fstp fres" instruction stores the register value ST0 to the memory operand fres as a 
32-bit single precision number. After the store operation, the stack is popped so register 
ST0 is now 'empty'.  

5. The procedure fprint is used to print the value in the memory location fres to the screen 
as a floating-point number.  It uses an external procedure called ftoa that is found in the 
float.lib library to covert the 32-bit FP number to an ASCIIZ representation.  The ftoa 
procedure expects CX to contain the number of digits of precision needed; DX:AX to 
contain the 32-bit single precision FP number, and DS:DI to point to a memory buffer 
where the null-terminated string is to be placed (the 'ares' buffer is used for this).  After 
ftoa is called, the Irvine library procedure writestring is used to print the string to the 
console.  Note that this program requires two libraries to be linked to it, so the library 
needs to be specified as "Irvine+float" when the linker prompts for a library name. 

6. The "fmul op4" operation (single operand format) does a multiply operation ST0 = 
ST0*op4.  Note ST0 is equal to 'op3' because of the 'fld op3' instruction that immediately 
preceded the fmul operation.   The result of the fmul operation is then stored into fres via 
'fstp fres' and printed to the console by the fprint procedure.  



4 

7. The fsqrt instruction performs the square root operation  ST0 = sqrt(ST0).  The value of 
ST0 was set to op3 by the previous "fld op3" instruction. 

8. The fsin instruction performs the sine operation  ST0 = sine(ST0)  (ST0 value in radians).  
The value of ST0 was set to op3 by the previous "fld op3" instruction. 

9. The fcos instruction performs the cosine operation  ST0 = cosine(ST0)  (ST0 value in 
radians).  The value of ST0 was set to op3 by the previous "fld op3" instruction. 

 

Lab Question 1:  Assemble this program and execute it.  

A. For each of the calculations, list the numerical arguments and verify that the correct result 
is obtained.  Do you notice any round-off error in any of the computations? 

B. Change the program such that the FSQRT function is passed a negative value.  Single 
step through the program and record the 32-bit value that is passed back (wait until the 
result is stored in memory at location fres, then examine the value in memory - remember 
that it will a 32-bit value stored LSB first). . Using the information in the notes on single-
precision floating point numbers, determine the values of the sign bit, the exponent, and 
the significand.  What 'special' number is this? 

C. Write a program that will compute the two real roots for the equation ax2 + bx +c using 
the quadratic formula  ( -b ± sqrt(b2 - 4 a c) )/ 2a .   Write your program such that it 
prompts the user for the values of a, b, and c (use the Irvine Readint procedure).  Warning 
-- the Irvine Readint procedure returns a 16-bit signed integer value.  You will need to 
store this to a memory location, then use "FILD memloc" to read this integer value into 
the floating point register stack (will go into ST0 and will be converted to floating point 
format).  Test your program with several values of a,b,c and include the assembled listing 
of this program in your lab report.  



5 

 

B.  Cycle Counts for Instructions  
The number of clock cycles that an instruction requires depends on the instruction and the 
addressing modes of its instructions. Typically, instructions of the same general class with the 
same addressing modes will take the same number of clock cycles (i.e, the logic instructions XOR, 
AND, OR using register operands take the same number of clock cycles).  The program below 
(inttim.asm) can be used to estimate the number of clock cycles required for an instruction.  
.model small 

 .586 
.stack 200h 
.data 
 
baselo  dd  ? 
basehi  dd  ? 
timlo dd  ? 
timhi dd  ? 
mtest dw  0 
 
.code 
 extrn Crlf:proc,Writestring:proc, WriteInt:proc 
 
main    proc 
 mov     ax,@data 
 mov ds,ax 
 
 mov si,1 
outerlp1: 
 
;; baseline loop -- everything except instruction to be measured 
 mov ecx,64 
 call timget 
 mov baselo,eax   ;; save low value 
 mov basehi,edx   ;; save high value 
 
lp1: 
 mov ax, 0f20h 
 mov bx, 0140h   ;320 
 loopd lp1 
 
 call timget 
 sub eax,baselo   ;; subtract low value 
 sbb edx,basehi   ;; subtract high value 
 mov baselo,eax   ;; save 
 mov basehi,edx 
 
;; measure loop -- has instruction to be measured 
 
 mov ecx,64 
 call timget 
 mov timlo,eax   ;; save low value 
 mov timhi,edx   ;; save high value 
 
lp2: 
 
 mov ax, 0f20h 
 mov bx, 0140h   ;320 
 
;uncomment one line at a time and see how cycle time changes 



6 

; div bl 
; mul bx 
; add ax,bx 
; mov ax, word ptr mtest 
; add word ptr mtest,ax 
; shl ax,1 
; shl ax,20 
 
sk1: loopd lp2 
 
 call timget 
 sub eax,timlo   ;; subtract low value 
 sbb edx,timhi   ;; subtract high value 
;; now subtract baseline value 
 sub     eax,baselo 
 sbb edx,basehi   ;; EDX:EAX has delta time  
 ;; 
 mov timlo,eax 
 mov timhi,edx 
 
 dec si 
 cmp si,0 
 jnz outerlp1    ;; loop at least once to  
       ;; make sure all code is in cache 
       ;; else may get negative times! 
;; print this out 
 mov cx,4 
 lea si,timhi+2 
 mov bx,16 
lp3: 
 mov ax,[si] 
 call writeint 
 sub si,2 
 loop lp3  
 
 Mov ax, 4c00h ;exit to DOS 
 Int 21h 
main endp 
 
;;; procedure that returns the Pentium+ 64 bit timer value 
;;;  in EDX:EAX 
  
 timget  proc 
   rdtsc  ;; read timestamp counter 
   ret 
 timget  endp 
   
end     main 
 

The above program attempts to measure the number of clock cycles for a particular instruction 
using the 64-bit timer available on Pentium compatible processors.  The approach is to execute a 
loop a fixed number of times with and without the target instruction, and compute the cycle count 
differences between the two loops. 

How does the program work? 

1. The loop labeled as 'lp1' is the loop without the target instruction.  The loop is executed 
64 times and the resulting 64-bit timer count representing the number of clock cycles that 
this loop required to execute is stored in the memory value basehi:baselo .  



7 

2. The looped labeled as 'lp2' is the same code as 'lp1' except the target instruction should be 
inserted in this loop. There are several target instructions in the code that are commented 
out -- one of these should be uncommented and the code assembled/executed to get a 
timing measurement for that instruction.  This loop is executed 64 times and the resulting 
64-bit timer count representing the number of clock cycles that this loop required to 
execute is stored in the memory value timerhi:timerlo . 

3. After the two loops are executed, the value for  timerhi:timerlo -  basehi:baselo is written 
to the console (in hex). This is the number of extra clock cycles that lp2 took over lp1 
because of the additional instruction in lp2.  Dividing this number by the loop count (64) 
should give you an approximate clock cycles per instruction value.   

Careful examination of the inttim example shows the loops lp1, lp2 are actually executed twice 
before a value is printed.  This is an attempt to make sure that all instructions are in the on-chip 
cache before we calculate a cycle count time (the first time through the code all instructions get 
copied into the cache).  The loop count time of 64 was chosen somewhat arbitrarily - you want it 
large enough to account for any extraneous clock cycles due to cache behavior but not so large 
that the program gets temporarily suspended while another task executes. 

Lab Question 2:  For each of the target instructions in loop2  (div, mul, add registers, mov, add 
with memory, shift small, shift large), uncomment the instruction, assemble and execute. Record 
the hex value for the difference in clock cycles between the two loops, and compute the number of 
clock cycles per instruction.  Be sure that you record the processor type that you are running the 
programs on, and use the SAME PC for all measurements.  

A. You may get a value less than 1 clock cycle per instruction, or even see very little to no 
difference between the loops for some instructions.  What could be the reason for this? 
(hint: look up the term 'superscalar' in either your Uffenbeck textbook or from WWW 
resources). 

B. Rank the instructions in terms of SLOWEST to FASTEST.  Why might some instructions 
take longer to execute than others? 

Lab Question 3:  The multiply operation in the program does AX * BX where BX is the value 
320.   This multiplication could also be done as:     
AX*320 = AX*(256+64) = AX*256+AX*64 = shl(AX,8) + shl(AX,6). 

Modify the program to see which method is faster.  When we are trying to compare two dissimilar 
loops, you should modify the loop2 code to NOT subtract the 'basehi:baselo' value that is recorded 
in loop1 -- just record the absolute clock cycles for loop2 (timelo, timehi) using the MUL 
instruction, and loop2 rewritten to perform the operation above (note that the value of 320 does 
not have to be loaded into BX for the 2nd case).   Report your findings in your lab report and 
include the assembled listing of your program. 

NOTE: The answers to these questions will depend entirely upon what type of processor you are 
using: Pentium 2/3/4/??, Athon?? Etc.   You need to perform all measurements on the same 
processor type.      



8 

 

Lab Report  

A. Describing What You Learned 
Include the answers to all "Lab Questions" in your report. 

B. Applying What You Learned 
Demonstrate the programs you wrote for Lab Questions 1 and 3 to the TA.  

One last note - it is instructive to also try this instruction timing approach for floating point 
operations.  However, this only works if you have Win 2000/XP. It does not work for 
Win98/ME/NT.   The x86 Virtual Machine used under Win98/ME/NT skews the FP cycle counts.  


