
4. More work with Memory
Addressing, Simple Conditional
Jumps, Looping

Background

The programs that we have examined so far have executed code from start to finish in a straight
line. Most programs require some kind of loop to repetitively execute a section of code or test a
condition and jump to some other location. This lab will introduce you to the following
instructions: CMP, JNE/JNZ, LOOP, INC, DEC.

Objective
 Learn how to write simple counting loops.

Pre-Lab

Read the descriptions of the following instructions in the back of the Irvine textbook: CMP,
JNE/JNZ, LOOP, INC, DEC. Read sections 4.3 of the Irvine textbook and the portions of
Chapter 6 in Irvine concerning the CMP and JNE/JNZ instructions.

Lab

A. A Simple Counting Loop (Example 1)
The program below prints out the letter ’A’ to the screen 5 times. Enter this program and execute
it.

 .model small
 .stack 100h
 .data
 .code
 main proc
 mov ax,@data
 mov ds,ax
 mov cx,5
 LP1: mov dl, 41h
 Mov ah, 2
 Int 21h
 Dec cx
 Jnz LP1
 Mov ax, 4c00h
 Int 21h
 Main endp
 End main

How does this program work?

1. The program forms a loop that starts with the instruction "LP1: mov dl, 41h" and ends
with the instruction "JNZ LP1".

2. The code that is in the loop prints the letter ’A’ to the screen. The INT 21H DOS call
with AH=2 will print the value of register ’DL’ to the screen. The instruction ’mov dl,
41h’ loads the value of DL with the ASCII value of the letter ’A’.

3. The CX register is being used to control how many time the loop is executed. The
instruction ’mov cx, 5’ loads CX with the value 5. The instruction ’dec cx’ decrements
CX (subtracts one from CX) each time though the loop.

4. The end of the loop is formed by the instruction ’JNZ LP1’ which is called a conditional
jump. The JNZ instruction (Jump on Not Zero) will jump to the instruction at the label

’LP1’ if the ZERO Flag = 0 (cleared). If the Zero Flag = ’1’ (set), then the Jump will not
be taken and instruction after the JNZ will be executed.

5. How do we exit the loop? Each time the ’dec cx’ instruction is executed, the Flag register
is affected. If the CX register is not equal to Zero after the ’dec cx’ instruction, then the
Zero flag will be ’0’. This mean that the JNZ instruction will jump to the instruction at
label ’LP1’. When CX finally reaches 0, the the Zero flag will be ’1’, and the jump WILL
NOT BE TAKEN -- this will cause the program to exit the loop.

6. You can also use ’JNE’ (jump not equal’) as an alternate Mnemonic for JZ.

7. A conditional jump instruction must specify a label name to jump to. The label name
must be present in the code somewhere in front of some x86 instruction. The label "LP1"
was used in this program. Note that a colon ’:’ is used with the label in front of the x86
instruction "LP1: mov dl,41h". You cannot use the same label name to label different
instructions.

Lab Question 1: Use Codeview to single step through this program. Change the program
such that CX is loaded with 300 instead of 5, re-assemble the program and re-execute it to see
what happens. Add comments to each X86 program line and explain what that line does.
Include the LISTING file of this program in your lab report.

B. The LOOP instruction (Example 2)
Example 1 illustrated a counting loop in which a section of code was executed a fixed number of
times. This is very common, and a special instruction called the LOOP instruction can be used as
another way of accomplishing this. The program below is a modification of Example 1 in which
the LOOP instruction has replaced the DEC and JNZ instructions. The LOOP instruction
combines the DEC and JNZ instruction into one instruction - LOOP will decrement CX by 1, and
then jump to the labeled instruction if CX is not equal to 0.

. .model small
 .stack 100h
 .data
 .code
 main proc
 mov ax,@data
 mov ds,ax
 mov cx,5
 LP1: mov dl, 41h
 Mov ah, 2
 Int 21h
 Loop LP1
 Mov ax, 4c00h
 Int 21h
 Main endp
 End main

Lab Question 2: Use Codeview to single step through this program using the F8 (TRACE)
command. Exit codeview, and now step through using the F10 (STEP) command. What
happens? You need to be aware of this difference between TRACE and STEP in codeview. Add
comments to each X86 program line and explain what that line does. Include the LISTING file of
this program in your lab report.

C. The CMP instruction (Example 3)
Both of the previous examples were ’Count Down’ loops in which we counted down to zero by
decrementing a register. What if we wanted to count up? We would need some method of
checking to see if CX had reached a particular value. The program below is an example of a
count UP loop.
.model small

 .stack 100h
 .data
 .code
 main proc
 mov ax,@data
 mov ds,ax
 mov cx,0
 LP1: mov dl, 41h
 Mov ah, 2
 Int 21h
 inc cx
 cmp cx, 5
 Jnz LP1
 Mov ax, 4c00h
 Int 21h
 Main endp

End main

How does this program work?

1. The CX register is being initialized to 0 via the instruction ’mov cx,0’.

2. Each time through the loop, the CX is being incremented by 1 via the ’inc cx’ instruction.

3. We want to exit the loop after it has been executed 5 times. The CMP instruction is being
used for this purpose. A CMP instruction does a subtraction, but does not store the result
- only the flags are affected. So ’cmp cx,5’ does a ’CX - 5’ operation. Note that if CX is
not equal to 5, then the subtraction result is non-zero (Zero Flag = 0) which causes the
’Jnz LP1’ to jump to LP1. If CX = 5, then the subtraction result is ’0’ (Zero Flag = ’1’)
which cause the loop to not be taken.

4. You can also use the mnemonic ’JNE’ (Jump Not Equal). This may be easier to read,
since the conditional jump will be taken if CX is not equal to 5.

Lab Question 3: Edit the program to use JNE mnemonic instead of JNZ, and verify its operation
by assembling and executing it. Add comments to each X86 program line and explain what that
line does. Include the LISTING file of this program in your lab report.

D. Memory Copy (Example 4)
The program below prints out string #1, copies string#1 to string#2, then prints out string #2.
Unfortunately, it was written by somebody from Ole Miss so it does not use loops.

.model small
 .stack 100h
 .data
 string1 db "Hello","$"
 string2 db 128 dup (?)
 .code
 main proc
 mov ax,@data
 mov ds,ax
 mov dx, offset string1
 mov ah,9
 int 21h
 mov bx, offset string1
 mov si, offset string2
 mov al,[bx] ;read byte from string1
 mov [si],al ;write byte to string2
 mov al,[bx+1]
 mov [si+1],al
 mov al,[bx+2]
 mov [si+2],al
 mov al,[bx+3]
 mov [si+3],al
 mov al,[bx+4]
 mov [si+4],al
 mov al,[bx+5]
 mov [si+5],al
 mov al,[bx+6]
 mov [si+6],al
 mov dx, offset string2
 mov ah,9
 int 21h
 Mov ax, 4c00h
 Int 21h
 Main endp
 End main

Lab Question 4: Assemble and execute this program. Then use Codeview to single step through
the program (do not proceed to Question #5 until you understand how this program operates). Use
the memory window to watch the memory locations for string#2 as they are modified by the
program. Include the LISTING file of this program in your lab report.

A. What are the logical addresses for the start of string#1 and string#2?

B. What values get initially loaded into DS? Into SI? Into BX? How does this correspond to the
logical addresses for string#1 and string#2?

Lab Question 5: Edit this program so that a count down loop is used to copy the string (you can
assume that the string is always 6 characters in length (includes the ’$’). Add comments to each
X86 program line and explain what that line does. Include the LISTING file of this program in
your lab report. You may find the instructions ’inc bx’ (add 1 to bx), ’inc si’ (add one to the SI
register) useful. You can choose whether or not to use the LOOP instruction.

Lab Question 6: Modify the program you did in Question 4 so that it does NOT assume a fixed
length string (can handle any length string up to 128 bytes including the ’$’). Add comments to
each X86 program line and explain what that line does. Include the LISTING file of this program
in your lab report. HINT: Your program needs to check when it is at the END of string#1. You
will need to compare the byte value that you read from String#1 against the ASCII value for a ’$’
to see if your loop needs to be exited.

Lab Report
Include the answers for all Lab Questions in your report.

Applying what you learned
You must demo the programs written for Lab questions 5 and 6 to the TA.

