
6. Subroutines, Number I/O, Linking
to External Procedures

Background
A good programming practice in any language is to package commonly needed operations into
modules that can be reused by other programs. Various names are used for these modules:
subroutines, procedures, functions, etc. We will use the terms procedure and subroutine
interchangeably to refer to these reusable code modules. This lab will introduce you to the
subroutine call/return capability of the x86 instruction set in the context of ASCII number I/O.
You will also learn how to use the external procedures that are available in the Irvine link library.

Objectives:

A. Learn how to write subroutines in x86 assembly language.

B. Understand the problems/solutions involved with ASCII Number input/output.

C. Make use of the external procedures in the Irvine link library.

Pre-Lab
1. Read Section 4.7 in the Irvine textbook about how to use the Irvine link library.

2. Read Sections 5.1 through 5.3 in the Irvine textbook about procedures.

3. Explain the difference between a NEAR subroutine call and a FAR subroutine call.

Lab

A. Number Output
The previous lab had a program that would output an 8-bit number to the screen in binary format.
For example, the 8-bit value E6h was displayed as "11100110". The program had to look at each
bit in the 8-bit number, and send the ASCII equivalent of a '1' (31h) or '0' (30h) to the screen using
the DOS single character printing function. For the 8-bit value E6h, this meant that the following
ASCII codes were sent to the console: 31h, 31h, 31h, 30h, 30h, 31h, 31h, 30h.

What if we wanted to print the 8-bit value E6h to screen as a HEX number? We would need to
send the ASCII codes for 'E' and '6' to the console, or 45h and 36h.

What if we wanted to print the 8-bit value E6h to the screen as an unsigned decimal number? The
value E6h as an unsigned decimal number is 14*16 + 6 = 230. The ASCII codes for '2', '3', '0'
would have to be sent to the console: 32h, 33h, 30h.

What if we wanted to print the 8-bit value E6h to the screen as a signed decimal number? The
value of E6h as a signed decimal number (2's complement representation) is a "-26". The ASCII
codes for a minus sign "-', '2', and '6' would be sent to the console: 2Dh, 32h, 36h.

Converting a number to its HEX , BINARY or signed/unsigned DECIMAL representation in
ASCII digits for display purposes is a common problem. Writing subroutines to handle different
parts of this process is a good method for solving this problem.

The program below is an example of HEX output.
.model small
.586
.stack 100h
.data
.code
main proc

mov ax,@data
mov ds,ax
xor al,al ;clear ax
mov cx,16 ;print all 16 hex digits

lp1: push ax
call out1hex
call pcrlf
pop ax
inc al
loop lp1
Mov ax, 4c00h
Int 21h

Main endp

Pcrlf proc ;print carriage return/line feed
Mov dl,0ah ;line feed
Mov ah,2
Int 21h ;print it
Mov dl,0dh ;carriage return
Mov ah,2
Int 21h
Ret

Pcrlf endp

Out1hex proc ;output lower 4-bits of AL as Hex char
And al,0fh ;make sure AL value is 0 to F
Cmp al,9 ;is 4 bit value above 9?
Ja ischar
Add al,30h ;convert to ascii digit '0' to '9'
Jmp printit

Ischar: add al,37h ;convert to ascii digit 'A' to 'F'
Printit: Mov dl,al

Mov ah,2
Int 21h ;print it using DOS single char output
Ret

Out1hex endp
End main

Assemble this program, execute it and observe this program. How does this program work?

1. The program consists of a main program that calls two subroutines named 'PCRLF' and
'OUT1HEX'.

2. The PCRLF subroutine prints out a carriage return, line feed in order to advance the
cursor one line and move it back to the left hand side of the screen.

3. The OUT1HEX subroutine will output the lower 4 bits of register AL as a hex digit '0' to
'F'. If AL is 9 or lower then the value 30h is added to AL to covert it to an ASCII digit '0'
to '9' (30h to 39h). To do this check, AL is compared to 9 (cmp al, 9) and then a jump is
made to the instruction at 'ischar' if AL is above 9 (ja ischar --- 'ja' stands for 'Jump if
Above'). If AL is above 9, the value 37h is added to AL to convert this to the ASCII
character 'A' through 'F' (note that if AL is 10 or 0Ah, that 0Ah + 37h = 41h which is
ASCII for 'A').

4. The main program tests the OUT1HEX subroutine by calling it for all values of 0 to Fh
via a loop that sets AL to 0 and then increments AL by 1 each time through the loop for
16 times. Note that the value of AL is saved on the stack between calls to OUT1HEX via
the PUSH/POP instructions because the OUT1HEX subroutine will destroy the value of
AL (remember that PUSH/POP can only save 16 bit registers so PUSH AL is illegal).

5. Note that a subroutine is called via the CALL instruction and that a subroutine must have
a RET instruction at the end of it in order to return from the subroutine call. To define a
subroutine to MASM, it must be bracketed by 'proc' and 'endp' statements as shown. A
FAR call is when both the code segment and IP is pushed on the stack (the subroutine can
be in a different code segment). A NEAR call is when only the IP is pushed on the stack
which means that the subroutine is in the same segment. When the statement '.model
small' is used, only one code segment is allowed so all calls are NEAR calls. When the
statement '.model medium' is used, multiple code segments are allowed and all calls are
by default FAR calls (CS, IP pushed on the stack).

Lab Question 1:

A. Use codeview to examine the machine code of the program above. What is the machine
code that gets generated for the CALL OUT1HEX instruction? What is the machine
code that gets generated for the RET instruction in the OUT1HEX instruction? What is
the logical address of the 'call OUT1HEX' and 'call PCLF' instructions in the program?

B. Set the memory window to point to the STACK SEGMENT:SP value (the stack grows
down in memory so you should modify the last line in your memory display to point to
this). How does the stack memory area and stack pointer get modified after the first
'PUSH AX' instruction? How does the stack memory area and stack pointer get modified
after the first 'CALL OUT1HEX' instruction? DRAW A STACK PICTURE in your lab
report that shows this. WARNING: Part of the 'tracing' process by Codeview modifies
memory below your current Stack Pointer value. This means that you will see highlighted
areas of memory in your stack memory display that indicates changes - these changes are
not being done your program but by codeview. You should only be concerned about
stack memory changes that are made above or equal to your stack pointer.

C. Change the statement '.model small' to '.model medium'. Make no other changes to the
program. Use codeview to look at the machine code -- what is different now about the
code generated for the CALL instructions and the RET instructions (compare the
machine codes)? Answer the same questions that you answered for 'A'.

D. Answer the same questions that you answered for 'B' with the new code.

Lab Question 2: Modify the program above to have a subroutine called 'OUT2HEX' that calls
OUT1HEX twice to printout the 8-bit bit value in register AL as a 2-digit HEX value (see the
online lecture notes for this program). Modify the main program to test OUT2HEX with all values
between 00 and FFh. Include the assembled listing in your lab report.

B. Using an External Library
We will return to the problems of ASCII number conversion later in this lab. This section will
explore using the procedures in the Irvine library provided with the CDROM in your Irvine
textbook. Locate the file 'irvine.lib' and copy it to your local directory (can be found the CDROM
with the Irvine textbook or on the PCs in the Micro I lab). The Irvine library provides many
procedures that you will find useful in this course. Make sure that you read section 4.7 in Irvine.

The program below uses some procedures from the Irvine library to read an ASCII string
representing a signed decimal value and display that value to the screen in binary, octal, unsigned
decimal, signed decimal and hex.
.model small
.586
.stack 100h
.data
prompt db "Enter Signed decimal: ",0
bin db "Binary: ",0
oct db "Octal: ",0
udec db "Unsigned Decimal: ",0
sdec db "Signed Decimal: ",0
hex db "Hex: ",0
.code
extrn Clrscr:proc, Crlf:proc, ReadInt:proc
extrn Writestring:proc, WriteInt:proc
extrn Writeint_signed:proc

main proc
mov ax,@data
mov ds,ax
call Clrscr
mov dx, offset prompt
call Writestring

;get 16-bit signed decimal number, value returns in AX
call Readint
call Crlf
mov dx, offset bin
call Writestring
mov bx,2
call WriteInt ;display as binary
call Crlf
mov dx, offset oct
call Writestring
mov bx, 8
call WriteInt ;display as octal
call Crlf
mov dx, offset udec
call Writestring
mov bx,10
call Writeint ;display as unsigned decimal
call Crlf
mov dx, offset sdec
call Writestring
call Writeint_signed ;display as signed decimal
call Crlf
mov dx, offset hex
call Writestring
mov bx,16
call Writeint ; display as hex
Mov ax, 4c00h
Int 21h

Main endp
End main

After you assemble this program, you must specify the "irvine" library when the 'link' program
asks you for a library name. Assuming the object filename is 'exam2.obj', you can also do the
link without prompting via:

 link exam2,,,irvine,,

This assumes that the irvine.lib file is in your current directory. Execute the program at least twice
and enter values of 20 and -2 . How does this program work? (Section 4.7 of the Irvine text has a
complete description of all external procedures listed in this program)

1. The external procedure Clrscr is used to clear the screen and put the cursor in the upper
left corner.

2. All prompt/message strings that are written to the screen use the external procedure
Writestring. Strings that are passed to this procedure must be null-terminated, i.e, the last
byte has a value of 0h (these are also known as ASCIIZ strings). This is a much more
common (and reasonable) way of terminating strings than using a '$' as DOS does.

3. The external procedure Readint is used to read an ASCII string that represents a signed
decimal number and converts that number to a 16-bit value that is returned in AX.

4. The external procedure WriteInt is used to display the number that was entered in binary,
octal, unsigned decimal, and hex. The number to be displayed is passed in AX. The
value passed in BX determines the base (2 = binary, 8 = octal, 10= decimal, 16 = hex).

5. The external procedure WriteInt_signed is used to display the number as a signed decimal
number.

Lab Question 3: Included the assembled listing of this program in your lab report.

A. Run the program and enter the value 32767. Record the values that get displayed.

B. Run the program and enter the value 32768. What gets displayed and why?

C. Number Input
The external procedure ReadInt is doing more work than might be apparent to you at first. In this
section you will write some code that duplicates what ReadInt accomplishes. The program below
is an incomplete program that uses the Irvine external procedure Readstring to get two ASCII
strings from a user. The ASCII strings are intended to represent two-digit, unsigned decimal
numbers. The procedure calls a subroutine Dec2Hex that should convert the two digit decimal
ASCII string to an 8-bit value. The program then adds these two values together and displays the
result in decimal.
.model small
.586
.stack 100h
.data
prmpta db "Enter first 2-digit decimal string (xx): ",0
prmptb db "Enter second 2-digit decimal string (yy): ",0
prmptc db "The sum is: ",0
buffa db 4 dup (?)
buffb db 4 dup (?)
.code
extrn Clrscr:proc, Crlf:proc, Readstring:proc
extrn Writestring:proc, WriteInt:proc

main proc
mov ax,@data
mov ds,ax
call Clrscr
mov dx, offset prmpta
call Writestring
mov ax,2
mov dx, offset buffa ;returned characters go here
call Readstring
call crlf
mov dx, offset prmptb
call Writestring
mov ax,2
mov dx, offset buffb ;returned characters go here
call Readstring
call crlf
mov bx, offset buffa
call dec2hex ;convert 2 digit ASCII decimal string
push ax ;save converted value
mov bx, offset buffb
call dec2hex
mov bx,ax
pop ax
add ax,bx
push ax ;save value
mov dx, offset prmptc
call Writestring
pop ax
mov bx,10
call Writeint
call Crlf
Mov ax, 4c00h
Int 21h

Main endp

Dec2hex proc
;; you fill this in…
ret

dec2hex endp
End main

The Readstring procedure reads characters from the keyboard and stores them in consecutive
memory locations starting at the address passed in register DX. So if the string '35' was typed in,
the values 30h, 35h would be stored starting at the address pointed to by DX.

Lab Question 4:

A. Assemble and execute this program (do not forget to link in the irvine.lib file). If you are
not sure how the program works, trace through it with Codeview. The program produces
the incorrect result because the 'dec2hex' subroutine is incomplete.

B. Complete the 'dec2hex' subroutine such that it takes the two digit unsigned decimal string
pointed to by register 'BX' and converts to it the correct 8-bit value that is returned in AL
(register AH must be returned as '0'). The first ASCII digit represents the 10's digit, so
subtract 30h from this ASCII byte to get the value of the digit, then multiply it by 10.
Take the result and add it to the 2nd ASCII digit (after you subtract 30h from the 2nd
ASCII digit). You do not have to worry about any error checking -- you can assume that
the ASCII string is always two digits long (if you test you program with 2+3, enter these
as '02' , '03'). Comment the operation of your dec2hex subroutine and include the listing
file of the complete program in your lab report. You might need to use the "Set
Breakpoint" capability of Codeview to debug this program. To set a breakpoint, click on
the code window, and use the arrow keys to scroll to the instruction for the breakpoint
(click on the address with the mouse). Then use the "Data->Set Breakpoint" command to
set a breakpoint. You might want to set a breakpoint at the first instruction of 'dec2hex',
then use the F5 (Go) command in codeview to execute the program. When the
breakpoint is reached, trace the program from that point and verify that your DEC2HEX
subroutine is producing the correct value.

Lab Question 5: Write a new version of the program that you did for Question 4 that allows
signed two digit decimal numbers to be entered (+03, -45, etc). One needed change is that your
dec2hex subroutine can no longer always return 0h in AH -- you need to sign extend AL to a 16
bit value returned in AX (look at the description of the CBW instruction). You also need to use
the Writeint_signed external procedure to display the sum value. Think about how the '+' and '-'
sign characters need to be used by your dec2hex subroutine. Include the complete assembled
listing of your program in your lab report.

Lab Report

A. Describing What You Have Learned
Include the answers to all "Lab Questions" in your report.

B. Applying What You Have Learned
Demo the programs that you wrote for lab questions 2, 4, and 5 to the TA.

