
7. Text-based Graphics

Background
The basic character screen in a DOS-mode window can be thought of as an X,Y grid with 25 rows
and 80 columns (see picture below).

The Basic Input Output System (BIOS) is a set of x86 subroutines stored in Read-Only Memory
(ROM) that can be used by any operating system (DOS, Windows, Linux, etc) for low-level
input/output to various devices. This lab will examine some BIOS routines for positioning the
cursor and setting character attributes. The lab will also introduce you to the random number
functions in the Irvine library.

Objectives:

Understand:

A. Cursor positioning and text mode attributes using the BIOS 10h software interrupt

B. Irvine procedures for pseudo random number generation

C. Use of a delay subroutine in a program

Pre-Lab
Read section 5.7 in the Irvine textbook about BIOS-level Video control for text modes.

0,0 0,79

24,0 24,79

Screen coordinates are row,column

Basic DOS window is 25 rows, 80
columns

0,0 0,79

24,0 24,79

Screen coordinates are row,column

Basic DOS window is 25 rows, 80
columns

Lab

A. Positioning the Cursor
The program below (movcur.asm) illustrates how to use the BIOS function for setting the position
of the cursor.
.model small
.586
.stack 100h
.data
row db 12 ;;initially at row 12
col db 40 ;;initially at col 40
.code
extern Clrscr:proc

main proc
mov ax,@data
mov ds,ax
call Clrscr ;clear screen
call setcur ; set cursor at row/col

lp1: mov ah,7
int 21h ; get character with no echo
cmp al,'w'
jne skip1
dec row ; move up
jmp domove

skip1: cmp al,'s'
jne skip2
inc row ; move down
jmp domove

skip2: cmp al,'a'
jne skip3
dec col ; move left
jmp domove

skip3: cmp al,'d'
jne skip4
inc col ; move right

skip4: cmp al,20h ;space = exit
je doexit

domove: call setcur ; set cursor at new position
jmp lp1

doexit: Mov ax, 4c00h
Int 21h

Main endp

setcur proc
mov ah,2 ;use BIOS 10h to set cursor
mov dh,row ; row position
mov dl,col ; column position
mov bh,0
int 10h
ret

setcur endp
end main

How does this program work?

1. Two memory locations ‘row’ and ‘col’ are used to keep track of the cursor position. The
setcur procedure calls the BIOS 10h, AH=2 cursor position function using the values
stored in the locations ‘row’ and ‘col’. The program starts out by clearing the screen and
then calls this procedure to position the cursor at the location initially specified by the
row and column memory locations.

2. The program then enters a loop that reads a character from the keyboard using the DOS
single character input function INT 21h, AH=7 which waits for a character and does not
echo the character to the screen. If the character is ‘w’, the row value is decremented; for
a ‘s’ the row value is incremented; for an ‘a’ the column value is decremented and for a
‘d’ the column value is incremented. The cursor is then positioned to the new row and
column. A space character causes the loop to exit.

Lab Question 1: Assemble this program and execute it (you will need to link in the irvine.lib
library). You should notice a problem when the cursor crosses a screen boundary (top, bottom, left
or right) – the row and column values are not modified correctly when a boundary is crossed
which causes erratic cursor movement. Modify the program so that the cursor wraps correctly
around to the next boundary (e.g., if the cursor moves off the right edge it should appear at the left
edge). Include the assembled listing of your program in your lab report.

B. Character Attributes
The BIOS display character function allows each displayed character to have an attribute (an 8-bit
value) that specifies foreground and background color. The program below (attr.asm) has two
nested loops which displays the letter ‘A’ for all possible attribute values.
.model small
.586
.stack 100h
.data
row db 0 ;;initially at row 0
col db 0 ;;initially at col 0
attr db 0 ;; initial attribute
.code
extern Clrscr:proc

;program will use BIOS 10h, function 9 to display the letter 'A' with all
possible attributes.

main proc
mov ax,@data
mov ds,ax
call Clrscr ;clear screen

lp1: xor al,al
mov col,al

lp2: call setcur ; set cursor at row/col
mov al,'A'
mov bl,attr
call wchar
inc attr ; increment the attribute
inc col
cmp col,16 ; at column 16?
jne lp2
inc row
cmp row, 16 ; at row 16?
jne lp1
call setcur
Mov ax, 4c00h ;exit
Int 21h

Main endp

setcur proc
mov ah,2 ;use BIOS 10h to set cursor
mov dh,row ; row position
mov dl,col ; column position
mov bh,0
int 10h
ret

setcur endp

;BIOS write character to page 0. Attribute in BL, char in AL
wchar proc

mov ah,9
mov bh,0
mov cx,1 ;write only 1 time
int 10h
ret

wchar endp
end main

The wchar procedure uses the BIOS display character function to display the character/attribute
pair passed in AL/BL. Be aware that the BIOS function displays the character at the current
cursor position and does not change the cursor position (unlike the DOS display character function
which advances the cursor). See section 5.7 in the Irvine textbook for more information on
character attributes.

 Lab Question 2: Assemble this program and execute it (you will need to link in the irvine.lib
library). You may notice some discrepancies between what is documented in the Irvine book for
attribute effects and what is displayed. For example, bit #7 is supposed to control blinking of the
characters – do you get blinking characters? Be sure that you understand how character attributes
work; you will need this for later in this lab. Include the assembled listing of this program in your
lab report.

C. Pseudo Random Numbers and a Delay Subroutine
The program below (rndchar.asm) illustrates how to use the random number generation
procedures in the Irvine library.
.model small
.586
.stack 100h
.data
dtime dw 500 ;; wait time in milliseconds

itimelow dd 0 ;; used by delay routine
itimehigh dd 0
.code
extern Crlf:proc
extern Randomize:proc, random_range:proc, Random32:proc

;; write a random digit with specified delay until any
;; character is entered

main proc
mov ax,@data
mov ds,ax
call Crlf
call Randomize ;; init random num gen

lp1:
mov eax,10
call Random_range ;; gen random num 0 to 9
add al,30h ;; convert to '0' to '9'
mov dl,al
mov ah,2
int 21h ;; display with DOS
mov cx,dtime ;; get time to wait
call mywait
;; check if a key is pressed
mov ah,6
mov dl,0ffh
int 21h
jz lp1 ; Zflag = 1 if no char, so loop

Mov ax, 4c00h ;exit
Int 21h

Main endp

CLKFREQ EQU 800 ;; clock frequency in MHZ
TICS_MS EQU CLKFREQ*1000

;; will delay # of milliseconds specified in CX. Register CX destroyed

mywait proc

push ax
push dx

mywaitlp2:
call timget
mov itimelow,eax
mov itimehigh,edx

mywaitlp1:
call timget
sub eax,itimelow
sbb edx,itimehigh

;; edx:eax has delta time. Compare to TICS_MS
sub eax,tics_ms
sbb edx,0
jc mywaitlp1
loop mywaitlp2
pop dx

pop ax
ret

mywait endp
;;; procedure that returns the Pentium+ 64 bit timer value
;;; in EDX:EAX

timget proc
rdtsc ;; read timestamp counter
ret

timget endp

end main

This program uses the Irvine pseudo random number procedures to choose a random digit between
‘0’ and ‘9’ and displays this character. The program continues doing this until a key is pressed on
the keyboard.

How does this program work?

1. Two Irvine library procedures are used for pseudo-random number generation:
Randomize and Random_range. The procedure Randomize needs to be called only once
at the beginning of the program in order to initialize the ‘seed’ for the random number
generator. The seed is a value that determines the sequence of numbers that will be
generated – different seeds give different random sequences. The Randomize procedure
uses the current time as the seed value. The term pseudo-random is used because if the
seed value is known, then the random number sequence can be predicted. However, the
random number sequence looks random to an external viewer who does not know the
seed value. The Random_range procedure is used to return a random number between
N-1 and 0 where N is passed in register EAX. CAUTION – the Random_range procedure
will not generate very random sequences if the number range is too small. This is
because many psuedo-random algorithms generate sequences that are not very random in
the low order bits. To counter this, you can use Random32 (generate a 32-bit random
number) and extract a group of bits from the middle of the 32-bit value and use this as
your random number.

2. The Random_range procedure is called with EAX = 10 so that a random number between
0 and 9 is generated. The value 30h is added to the returned random number to generate
the ASCII code for the digits ‘0’ to ‘9’ and this value is then displayed on the screen.

3. The mywait procedure is a procedure that will wait for the number of milliseconds passed
in CX. This procedure uses a 64-bit hardware timer that is present in every Intel
Pentium-compatible (586+) PC. The 64-bit counter is incremented on every clock cycle.
The procedure timget accesses the 64-bit counter and returns it in EDX:EAX (EDX
contains the high 32 bits, EAX contains the low 32 bits). The inner loop on the mywait
procedure waits for the number of timer ticks that is equivalent to 1 ms (1 millisecond).
It does this by first reading the timer and storing the 64-bit value in the locations itimelow
(low 32 bits) and itimehigh (high 32 bits). The equate TICS_MS is the number of timer
tics equivalent to 1 ms, and is computed as CLKFREQ*1000 where CLKFREQ is the
clock frequency in Mhz . To understand why this works, consider that there are 1000 µs
(microseconds) in 1 ms, and CLKFREQ number of clock cycles in 1 µs if the clock
frequency is in Mhz (a 1 µs clock period is equal to a 1 Mhz clock frequency). The
inner loop then continually reads the timer value, subtracting the original timer value
from the new timer value. When this difference becomes greater than TICS_MS then 1
ms has passed. The outer loop executes the inner loop by the number of times specified
in register CX.

4. The DOS 21h, AH=6 function is used to check for character input. This function does
not wait for a character to be typed – if a character is available then it is returned in AL
and the zero flag is cleared. If the zero flag is set (ZF = 1) upon return, then no character
is available. The program loops until any key is pressed on the keyboard. This DOS
function also does not echo the character to the screen..

Lab Question 3: Assemble this program and execute it (you will need to link in the irvine.lib
library). You will need to modify the CLKFREQ parameter to match the clock frequency of the
machine that you are on. To determine the clock frequency, use the ‘Start→Search→Find
Files/Folders” and find the program ‘msinfo32.exe’ (may also be available as
“Programs→Accessories→SystemTools→SystemInfo). Under System Summary the Processor
entry should give the clock frequency. Some older versions of Windows may not have
'msinfo32.exe' or it may not report the clock frequency. In this case, you can usually determine
the clock frequency by rebooting your PC and watching the BIOS screen information - this will
usually report the clock frequency and memory size of the PC during boot up.

A. The main program currently calls the mywait procedure with a value of 500 (wait for 500
ms or 1/2 second). Try changing this value to correspond to 10 seconds between
characters. If you have a stopwatch available, check the accuracy of this delay. If the
clock frequency is 1 GHz, how long would it take for this 64-bit timer to overflow?
(reach 0xFFFFFFFFFFFFFFFF). Give your answer in the largest appropriate unit of
years, days, hours, minutes, or seconds (if longer than a day, give the answer in days; if
longer than a year, give your answer in years). SHOW YOUR CALCULATIONS!!!!

B. Modify the main program to call mywait with a delay value of ‘1’ to see how fast
characters can be sent to the screen. Be sure that you understand how this program works
before proceeding to the rest of the lab. Include the assembled listing of this program in
your lab report.

D. A Programming Task
Now that you understand the inner workings of the previous programming examples, use this
knowledge to write a program that does the following:

A. The program should start by clearing the screen, and then place the cursor in the middle
of the screen. Write a character at this location (you choose the character), and then
randomly move the cursor one position either up, down, left, or right.

B. At the next position write a random character from the range 30h to FFh with a random
attribute. Then move the cursor randomly one position again, except you cannot go
backwards from the previous direction (if the previous move was up, then the next move
can only be up again, left or right – it cannot go ‘back’ on itself). This means that after
the first move, you can only move the cursor each time in one of three directions. You
can overwrite previous characters. You must wrap correctly at screen boundaries.

C. Start out by having the cursor move with a 1 second delay between characters. Monitor
the keyboard – if a ’w’ is pressed; decrease the time between characters (speed it up). If a
‘s’ is pressed, then increase the time between characters (slow it down). You can decide
on how much to increase/decrease the delay time for each key press.

D. If the space bar is pressed, then exit the program.

Lab Question 4: Include the assembled listing of this program in your lab report and make sure
that you have at least one comment for every two x86 instruction lines.

Lab Report

A. Describing What You Learned
Include the answers to all "Lab Questions" in your report.

B. Applying What You Learned
Demonstrate the programs you wrote for Lab Questions 1 and 4 to the TA.

