
8. Bit-Mapped Graphics

Background
The previous lab introduced you to the basics of text-based graphics on the PC. This lab will
introduce you to bit-mapped graphics on the PC. The standard video adapters found on PCs
support many different screen resolutions with differing numbers of colors per dot (or pixel) on
the screen. Graphics on the PC have gone through a long evolution that started with low
resolutions (less than 100,000 pixels), limited colors and primitive graphic capabilities to the high
resolutions (greater than 1 million pixels), true color and sophisticated 3-D graphic cards available
today. Because of the need for upward compatibility, even the most advanced graphic cards still
support the more primitive graphic modes.

Because of the complexity of computer graphics, this lab will look at the some of the earlier
graphic modes as a way of introducing a few of the basic concepts of bit-mapped graphics. This
lab will concentrate on the graphics modes known as "VGA", which is one step below the current
graphics modes that used by Windows (Super-VGA).

Objectives:

Understand:

A. Basic graphic modes on a standard video adapter for the PC

B. Operation of a color palette for controlling pixel colors

Pre-Lab
Read section 5.7 in the Irvine textbook about BIOS-level Video control for graphics modes.
Answer the following questions:

1. What is the difference between a text mode and graphics mode for a standard video adapter
on the PC?

2. What is a pixel? What does the value of a pixel represent?

Lab

A. Basic Graphic Modes on the PC (VGA)
The program below (vidtst.asm) illustrates how to set different graphic modes and the writing of
pixels to the screen. WARNING: On some laptops only the 640x480 mode will work.

.model small
.586
.stack 100h
.data

MAXROW equ 480
MAXCOL equ 640
MAXPIX equ 16
VIDMOD equ 12h ; 640x480 16 color

; MAXROW equ 200
; MAXCOL equ 320
; MAXPIX equ 16
; VIDMOD equ 0Dh ;320x200 16 color

; MAXROW equ 200
; MAXCOL equ 320
; MAXPIX equ 4
; VIDMOD equ 04h ;320x200 4 color

; MAXROW equ 200
; MAXCOL equ 320
; MAXPIX equ 256
; VIDMOD equ 13h ;320x200 256 color

BANDSZE equ MAXROW/MAXPIX
row dw 0
col dw 0
bandcnt db 0
pixel db 0
vmode db 0 ;; current video mode
vpage db 0 ;; current video page

.code

main proc
mov ax,@data
mov ds,ax

;; read current video mode and save
mov ah,0fh
int 10h
mov vmode,al
mov vpage,bh

;; set new video mode
mov ah,0
mov al,VIDMOD
int 10h

lp1:
call wpixel
inc col
mov ax,col
cmp ax,MAXCOL
jne lp1

;start new row
xor ax,ax
mov col,ax ;zero column value
inc bandcnt
mov al,bandcnt
cmp al,bandsze
jb nextrow
inc pixel ;inc to next color value
xor al,al
mov bandcnt,al

nextrow:
inc row
mov ax,row
cmp ax,MAXROW
jne lp1

doexit:
mov ah,1
int 21h ; get a key
mov ah,0

;; restore old video mode
mov bh,vpage
mov al,vmode
int 10h

Mov ax, 4c00h ;exit
Int 21h

Main endp

wpixel proc
mov ah,0ch
mov al, pixel
mov bh,0
mov cx,col
mov dx, row
int 10h
ret

wpixel endp
end main

This program sets a graphic mode, and then tests the mode by displaying all possible colors in
horizontal bands that progress down the screen. The program then waits for any key to be pressed
before restoring the original text mode and exiting the program.

How does this program work?

1. The BIOS function 10h, AH= 0 is used to set the video mode. The VIDMOD equate is
used to specify the video modes. The MAXROW, MAXCOL, MAXPIX equates specify
the maximum number of rows, columns and colors available in that video mode. The
program first saves the current video mode via the BIOS function 10h, AH=0FH, and
these sets the video mode as specified by VIDMOD.

2. To display all possible colors as horizontal bands of colors, the program uses the
BANDSZE equate to compute how many rows will have the same color via the
computation MAXROW/MAXPIX. The pixel value is stored in location 'pixel' and starts
out at a value of 0 (color 0). The memory locations row and col are used to keep track of
where the current pixel should be written, and the procedure wpixel uses the BIOS
function 10H, AH=0CH to write a pixel at that location.

3. The program loops, writing one row of pixels at a time (each pixel is written individually
using the wpixel procedure with the col value being incremented each time). When
BANDSZE number of rows has been written, the pixel value is incremented which
advances it to the next color value.

4. The program stops once the maximum row position has been reached and waits for a key
press.

Lab Question 1: Assemble this program and execute it (you will need to link in the irvine.lib
library).

A. Test the program with each set of VIDMOD, MAXCOL, MAXROW, MAXPIX values
by uncommenting each set in turn and re-assembling, re-executing the program.

B. Modify the program such that the colors are displayed in vertical stripes instead of
horizontal stripes. Include a commented listing (at least one comment for every two x86
instructions) of your program in your lab report.

B. Color Representation
A pixel color is composed of three components: Red (R), Green (G), and Blue (B). An RGB
monitor has an electron gun for each of these colors; the three beams converge on a pixel to
produce a color. The electron beam starts in the upper left corner and is swept left to right for each
row and moved down the screen to paint a complete screen (when the beam reaches the right edge,
it is turned off and moved quickly back to the left edge, and down a bit for the next row - this is
called horizontal retrace). When the beam reaches the bottom right corner, it is turned off, moved
quickly back to the upper left corner (vertical retrace), and the process is repeated. The refresh
rate of the monitor is usually between 60 Hz and 80Hz and this defines the number of screens
drawn per second. Different intensities for each beam (R,G,B) produce different colors. An
analog RGB monitor has an analog voltage input for each beam -- the voltage level on the input
determines the intensity of the beam. The video adapter is the device that provides these voltage
levels. Within the video card chipset is a device known as a Video DAC (Digital-to-Analog
Converter) that converts a digital value that represents a color to the analog voltage needed by the
RGB monitor.

The term '24-bit' color means that 8-bits are used for each of the R, G, B color components of a
pixel color so each pixel requires 3 bytes of memory. For RGB values, a value of '0' represents
the minimum beam intensity while a value of 255 is the maximum beam intensity. An RGB
value of 255,0,0 is the color bright RED, a value of 0,0,0 is BLACK, and 255,255,255 is
WHITE. If the screen resolution is 1280 x 1024 with 24-bit color, then the number of bytes of
memory needed for one screen would be 1280 x 1024 x 3 = 3,932,160 bytes (a little under 4 MB).

A value of 4 MB for video memory does not seem like a lot of memory these days, but it used to
be significant. To reduce the amount of memory required to represent pixel colors, a color palette
was used. A color palette is a lookup table stored on the video DAC. Each entry in the table
contains three values representing R, G and B. A pixel 'color' specifies a table entry, and the RGB
values stored for the table entry specifies the color. If the palette had 16 entries, then 16 colors
could be represented on the screen. Which colors these values represent depends upon what RGB
values are loaded into the color palette for each entry. For 16 colors, only 4 bits is needed for
each pixel (1/2 byte) so the memory needed for a 1280 x 1024 screen would be 1280 x 1024 x 0.5
= 655,360 bytes (a little over 1/2 MB).

All of the VGA video modes in the previous example (vidtst.asm) use a color palette for pixel
colors. A default color palette is loaded by BIOS for each video mode. The program on the next
page (paltst.asm) illustrates how to change the color palette for a video mode.

WARNING: The paltst.asm program is set by default for 320x200 mode. The 320x200 mode
might not work on some laptops, try using the 640x480 mode if you have problems with the
320x200 mode.

The tables in the paltst.asm program give colors as 8-bit values (0 –255). However, the subroutine
that sends these colors to the video card only uses the upper 6 bits because some older video card
only had 6-bits of color resolution in their Video DACs.

.model small
.586
.stack 100h
.data
MAXROW equ 200
MAXCOL equ 320
MAXPIX equ 16
VIDMOD equ 0Dh ;320x200 16 color

; MAXROW equ 480
; MAXCOL equ 640
; MAXPIX equ 16
; VIDMOD equ 12h ; 640x480 16 color

BANDSZE equ MAXROW/MAXPIX
row dw 0
col dw 0
bandcnt db 0
pixel db 0
vmode db 0 ;; current video mode
vpage db 0 ;; current video page

;; define a color palette
;; 16 entries each has a R, G, B value
;; leave border color alone

;; note that color zero is used for border
;; on many video cards in VGA mode, only 6 bits of precision so palette
;; routine ignores lower 2 bits.
;; in VGA mode!!!!
palette1 db 255,0,0 ;color 0

db 0,255,0 ;color 1
db 0,0,255 ;color 2
db 0,0,0 ;color 3
db 255,255,255 ;color 4
db 255,255,0 ;color 5
db 0,255,255 ;color 6
db 255,0,255 ;color 7
db 255,0,0 ;color 8
db 0,0,255 ;color 9
db 0,255,0 ;color 10
db 255,127,0 ;color 11
db 127,255,0 ;color 12
db 0,255,127 ;color 13
db 127,0,127 ;color 14
db 0,127,127 ;color 15

;; note that color zero is used for border
palette2 db 127,0,127

db 0,127,127
db 127,127,0
db 190,190,190
db 63,63,63
db 0,0,127
db 0,127,0
db 127,0,0
db 255,0,255
db 0,255,255
db 255,255,0
db 255,255,255
db 0,0,0
db 0,0,255
db 0,255,0
db 255,0,0

.code

main proc
mov ax,@data

mov ds,ax
;; read current video mode and save

mov ah,0fh
int 10h
mov vmode,al
mov vpage,bh

;; set video mode -- changing the video mode changes palette!!
mov ah,0
mov al,VIDMOD
int 10h

;; write a screen
call scrntst

;; change the pallette
mainlp: mov si,offset palette1

call sndpal
mov ah,7 ;get a key, no echo
int 21h ; get a key
cmp al,20h
je main_ex
mov si,offset palette2
call sndpal
mov ah,7 ;get a key, no echo
int 21h ; get a key
cmp al,20h
jne mainlp

main_ex:
;; restore old video mode

mov bh,vpage
mov al,vmode
mov ah,0
int 10h

Mov ax, 4c00h ;exit
Int 21h

Main endp

;; test the current mode by writing a band of colors
scrntst proc

xor ax,ax
mov row,ax
mov col,ax
mov pixel,al
mov bandcnt,al

lp1:
call wpixel
inc col
mov ax,col
cmp ax,MAXCOL
jne lp1

;start new row
xor ax,ax
mov col,ax ;zero column value
inc bandcnt
mov al,bandcnt
cmp al,bandsze
jb nextrow
inc pixel ;inc to next color value
xor al,al
mov bandcnt,al

nextrow:
inc row
mov ax,row
cmp ax,MAXROW
jne lp1

doexit:
mov ah,7 ;get a key, no echo
int 21h ; get a key
ret

scrntst endp

;; send a new palette passed in SI
;; if 640x480 mode, have to send in different sequence
sndpal proc

call retrace
xor al,al ; start at color 0
mov dx,3c8h ; port number for Video card
out dx,al

mov al,vidmod
cmp al,12H ;; 640?
je sndskip

mov di,si ;save si
mov cx,8
call palsub
mov si,di
mov cx,8
call palsub

;; because of the way the palette registers are arranged
;; send first 8 colors twice

mov cx,8
mov di,si
call palsub
mov si,di
mov cx,8
call palsub
ret

sndskip:
mov cx,16

sndskplp:
push cx
push si
mov cx,16
call palsub
pop si
pop cx
loop sndskplp

ret

sndpal endp

palsub proc
sndlp1:

mov dx,3c9h ; port number for Video card
mov al,[si] ;get RED value
shr al,2
out dx,al
mov al,[si+1] ;get GREEN value
shr al,2
out dx,al

mov al,[si+2] ; get BLUE value
shr al,2

out dx,al
add si,3 ;point to next color
loop sndlp1 ;send all colors
ret

palsub endp

; wait for vertical retrace
retrace proc

push dx
push ax

mov dx,03dah ;; wait for end of retrace
lpwaitstart:

in al,dx
and al,08h
jnz lpwaitstart

mov dx,03dah ;; wait for start of retrace
lpwaitend: in al,dx

and al,08h
jz lpwaitend

pop ax
pop dx

ret
retrace endp

wpixel proc
mov ah,0ch
mov al, pixel
mov bh,0
mov cx,col
mov dx, row
int 10h
ret

wpixel endp
end main

This program uses the code from the first program to display the colors of the 320x200x16 video
mode as horizontal bands. The program then switches the color palette on each key press between
two new color palettes; the space bar will exit the program.

How does this program work?

1. This program is simply a modification of the previous 'vidtst.asm' program. Two 16-
color palette tables called 'palette1' and 'palette2' have been added to the data segment.
Each table has 16 colors, with each color represented by three bytes (R, G, B). The
colors specified in these tables were arbitrarily chosen. Color '0' (the first entry) is used
for the screen border color -- normally this color is black (0,0,0).

2. The sndpal procedure is used to load a new palette into the video DAC. The sndpal
procedure expects the starting address of the palette to be passed in register SI. The
sndpal procedure operates by first writing a value of '0' to the video DAC register at port
3C8h. This tells the DAC that we want to start loading palette colors starting at color '0'.
The sndpal procedure then writes the table values sequentially to port 3C9h - every three
bytes written to this port defines a color entry and the order of the bytes is R,G,B.
Normally, the DAC expects to receive 256 color values -- for 16 colors the register
mapping is such that each block of 8 colors needs to be repeated twice. The sndpal
procedure uses the subroutine palsub to take care of this. This version of the sndpal
procedure only works with a 16-color palette. Note that the first thing that sndpal does is
call a procedure called retrace. The retrace procedure waits for the start of the vertical
retrace by reading a status register from the video card. Vertical retrace is when the CRT
beam is moved from the lower right corner of the screen back to the upper left corner in
order to begin drawing another screen. During this time, the beam is turned off. In this
way, the changing of the palette color occurs when the beam is turned off and is finished
before another screen is drawn.

3. After the initial color bands are displayed, the main program waits for a key press. On
each key press, a new color palette is loaded (alternates between palette1 and palette2).
The space character causes the program to exit.

Lab Question 2: Assemble this program and execute it. After the initial screen, use any
character other than the 'space' character to alternate between the color palettes. Note that
color 0 is used as the border color and that both of the new palettes use a non-black color for
color 0. For the 'default' palette, create a table in your report in which you use English to
describe the displayed colors -- also create columns for the R,G,B values of these colors.
Modify the original program so that Palette2 matches the default color palette (DO NOT
spend forever trying to get an exact color match - approximate the best that you can and then
move on). Include the RGB values that you determined for the 'default' palette in your lab
report. Note that the TOP band (color 0) of the default palette is BLACK and merges with
the top border. (There is a BIOS function that allows you read the current color palette - if
you want to try to use this function to determine the colors of the default palette instead of
using trial/error RGB matching, then go right ahead -- Use the HelpPC program linked to the
lab WWW page and look under BIOS Video Services to determine what BIOS function to
use).

C. A Programming Task - Color Animation
2-D Computer animation involves copying blocks of video memory representing groups of pixels
to different places in the video buffer. A technique known as color animation can be used to give
the appearance of movement but it only involves changing the color palette (this is much less CPU
intensive than copying blocks of memory). Write a program that does the following:

A. Define your own 16 color palette -- the only restriction on colors is that color 0 must be
black. You can repeat colors if you desire.

B. Use the program you wrote for Lab Question #1 (vertical color stripes) as a starting point.
Modify it to use your new color palette as the palette. Use the sndpal procedure from the
previous example to load your color palette into the video DAC.

C. Achieve color animation in your program by writing a loop that rotates the colors 1
through 15 on each loop iteration. To rotate the colors means that after the first
iteration, color 1 should be copied to color 2, color 2 to color 3, etc and color 15 to color
1. After the palette is rotated, load the new palette into the video DAC via the sndpal
procedure. Use the mywait procedure from the previous lab to add a delay between each
rotation of the color palette. You should be able to achieve an animation effect in which
the colors appear to march across the screen from left to right. To achieve more
interesting effects, change the mywait procedure from Lab7 such that the CX value
passed to mywait represents ten's of microseconds (.01 milliseconds) instead of
milliseconds. Doing this will allow you change the palette very quickly.

D. Start out by having the colors move with a 0.1 second delay between palette rotations.
Monitor the keyboard – if a ’w’ is pressed, decrease the time between rotations (speed it
up). If a ‘s’ is pressed, then increase the time between rotations (slow it down). You can
decide on how much to increase/decrease the delay time for each key press

E. If the space bar is pressed, then exit the program.

Lab Question 3: Include the assembled listing of this program in your lab report and make sure
that you have at least one comment for every two x86 instruction lines. After your program is
working, try executing your program with the call to the retrace procedure commented out of the
sndpal procedure. What visual differences do you see? Why does this happen?

Lab Report

A. Describing What You Learned
Include the answers to all "Lab Questions" in your report.

B. Applying What You Learned
Demonstrate the programs you wrote for Lab Questions 1 and 3 to the TA.

