
9. More Bit-Mapped Graphics

Background
In this lab we will look at some more aspects of bit mapped graphics, such as line drawing and
using the mouse as a graphics pointer.

Objectives:

Understand:

A. Basic line drawing operations

B. Using the mouse via the BIOS 33h function

C. Using the XOR operation for line erasure

Pre-Lab
Make sure that you read this entire lab before you attend class.

Lab

A. Using the Mouse to draw a horizontal line
The program below (hline.asm) illustrates how to draw a horizontal line and use the mouse to set
the endpoints.

.model small

.586

.stack 200h

.data
vmode db 0
vpage db 0
mse_x dw 0 ;mouse X
mse_y dw 0 ;mouse Y
del_x dw 0 ;delta x
xor_flag db 0
linecolor db 15 ; color 15 on default palette is WHITE

.code
main proc
 mov ax,@data
 mov ds,ax
 mov ah,0Fh ; get current video mode
 int 10h
 mov vmode,al
 mov vpage,bh ; save vid mode
 mov ax,13h
 int 10h ; Set video mode to 320x200x256.

 mov ax,01 ;enable the mouse
 int 33h

mainlp1: ; loop until key pressed or left mouse button pressed
 mov ah,6
 mov dl,0ffh
 int 21h
 jnz mainexit ;; exit if key pressed
 ;; check mouse left button
 mov ax,3 ;; the CX/DX position information is the value
 int 33h ;;
 test bl,01h ;; bx LSB = 1 if left button pressed
 jz mainlp1 ;; loop if left button not pressed
;; left button pressed, save coordinates
 shr cx,1 ;; Pixel X = mouse X / 2 for 320x200
 mov mse_x,cx ;; save X
 mov mse_y,dx ;; save Y
mainlp2: ;; loop until button released
 mov ax,3
 int 33h
 test bl,01h ;; LSB = 0 if left button released
 jnz mainlp2 ;; loop until button released

 mov ax,2 ;; hide the mouse before drawing
 int 33h

;; draw horizonatal line
 ;; compute delta_x = new_x - old_x
 shr cx, 1 ; Pixel X = mouse X / 2 for 320x200
 sub cx,mse_x ; cx = new_x - old_x
 mov bx,cx ; bx = delta for HLINE call
 mov cx,mse_y ; cx = Y for HLINE call
 mov dx,mse_x ; dx = Y for HLINE call
 mov ah, linecolor ; AH = linecolor for HLINE call
 mov al, xor_flag ; AL = xor flag for HLINE call

 call drawhline ; draw line

 mov ax,1
 int 33h ;;turn mouse back on
 jmp mainlp1
mainexit:;; restore mode
 mov al,vmode ;restore video mode
 mov bh,vpage
 mov ah,0
 int 10h
 Mov ax, 4c00h ;exit to DOS
 Int 21h
main endp

;; draw horizontal line DX: x, CX: y, BX: delta, AH: linecolor
;; AL = 0, do XOR, AL = 1, don't do XOR
;; delta can be negative
drawhline proc
 push 0A000h
 pop ES ;; set ES to Video segment
 ;; see if we have a negative delta
 or bx,bx
 jns drawh_sk1
 push 0ffffh ;; save negative 1 on stack
 neg bx ;; bx = 0 - bx, so delta is now positivie
 jmp drawh_sk2
drawh_sk1:
 push 0001h ;; push a '1' on stack
drawh_sk2:
 mov si,cx ;; get y
 shl si,6 ;; *64
 shl cx,8 ;; *256
 add si,cx
 add si,dx ;; add X to get starting address
 mov cx,bx ;; mov delta X to CX
 inc cx ;; inc CX to include line endpoint
 pop bx ;; get increment value into bx
drawh_lp1:
 mov dl,ah ;; move line color to dl
 cmp al,0
 jnz drawh_noxor
 xor dl,es:[si] ;; xor line color with pixel value
drawh_noxor:
 mov es:[si],dl ;; write pixel
 add si,bx ;; add increment value (-1 or 1) to SI
 loop drawh_lp1
 ret
drawhline endp
end main

This program first sets the graphic mode to 320x200x256. The program then enters a main loop
where it waits for either a keypress (will exit program) or a left mouse button press. If the left
mouse is pressed, the current mouse X,Y position is saved and then the program waits for the left
mouse button to be released. Upon left button release, the program computes the change in the X
coordinate value (delta_X) calls a procedure to draw a horizontal line starting with initial X,Y
coordinates and the computed 'delta_X' value. If the delta_X is positive, the line goes from left to
right. If the delta_X is negative, the line goes from the right to left.

How does this program work?

MAIN LOOP

1. Before the mouse can be read, it must first be displayed via the BIOS function 33h,
AX=1. The current position of the mouse and button status is read via the BIOS
function 33h, AX=3. The X,Y position of the mouse returns in registers CX, DX. This
function always returns mouse coordinates in the range X=0..639, Y=0..199 regardless
of the video mode. For the video mode 320x200, the mouse Y coordinate is the same as
a pixel Y coordinate. However, the mouse X coordinate must be divided by 2 (shift right
by 1) before we can save it as a pixel X coordinate. The button status is returned in
register BX, where bit0 (LSB) is a '1' if the left button is pressed, and '0' otherwise. Bit 1
is used for the right button status.

2. After the left button is pressed, the pixel coordinates for the current mouse position is
stored to locations mse_x, mse_y. The program then loops waiting for the left mouse
button to be released by continuously calling INT 33h, AX=3 until the LSB of BX
returns as '0'. After the button is released, the difference in the X values of the new X
mouse position and the old X mouse position is computed by subtracting the old X from
the new X. This delta_X value is needed by the horizontal line drawing procedure. Note
that the delta_X value is the length of the line in pixels, and can be a negative value. A
negative length means that the line is drawn starting at the initial X,Y location and is
drawn from right to left.

3. The horizontal line procedure is called with the starting X,Y position, the delta_X (length
of the line in pixels), the line color, and an XOR flag (explained later). The mouse is
hidden via the INT 33h, AX=2 procedure before the horizontal line procedure is called
because the mouse pointer can interfere with pixel values if the mouse is displayed during
drawing. After the line is drawn, the mouse is turned back on via the INT 33h, AX=1
function.

DRAWHLINE Procedure

The drawhline procedure draws a horizontal line and expects an initial X,Y (dx=X, cx=Y), a
delta_X (line length, bx= delta_X), linecolor (passed in AH), and an XOR flag passed in AL
(explained below).

1. The drawhline procedure writes directly to video memory, which starts at location
E000:0000. For the 320x200x256 video mode, each pixel takes a byte and is stored in
row major order. So the first 320 locations (first row) correspond to X,Y locations of 0,0
to 319,0 (location 0,0 is in the upper left corner, location 319,199 in the lower right
corner). The ES segment register is used to point to the video segment and is set to
A000h within the drawhline procedure.

2. The starting offset of the first pixel is 320*Y + X. This calculation can be done as
(256+64)*Y + X, or 256*Y+64*Y+X. Note that multiplication by 256 and 64 is just a
shift left by 8 and 6 respectively. On older processors it was faster to do the calculation
this way rather than by using the MUL instruction; on modern processors it may be faster
to do a single MUL rather than multiple instructions.

3. The SI register will be used to point to the initial memory location corresponding to the
X, Y value. As the line is written, the SI register will either be incremented (if the
delta_X is positive and line is going left to right) or decremented (if the line is going from
right to left). The delta_X value is initially tested, and a -1 will be stored in BX if
negative or a +1 stored in BX if positive. The BX register is added to the SI register each
time through the loop that writes a pixel.

4. The number of pixels to be written will be the absolute value of delta_X + 1 (the +1
means that endpoint of the line is included). This value is stored in register CX that is
used to control the loop that writes the pixels.

5. The AL register value passed to DRAWHLINE controls whether or not the linecolor
(passed in AH) is XOR'ed with the current pixel value or simply stored over the current
pixel. The XOR operation can be used to 'erase' a line that was previous written. The
first time the line is drawn, the new pixel value is the linecolor XOR'ed with the current
pixel value. If the same line is drawn again, the XOR operation restores the previous
pixel value (the line is 'erased'). The xor_flag memory value is passed to the
DRAWLINE procedure by the main program - if '0' then the XOR operation is done, if
nonzero then no XOR is done.

6. Note that the memory accesses to the pixels explicitly specify the ES segment register
 (mov ES:[SI], dl). By default, the SI register will use the DS segment register.

Lab Question 1: Assemble this program and execute it. To draw a line, hold down the left
mouse button and drag either left or right. The line will appear upon button release. Hit any
key to exit the program.

A. Draw several lines -- make sure that the xor_flag = 0 which means that the XOR
operation is turned on in the DRAWHLINE procedure. What happens if you draw a new
line over an old line? In your lab report, show how this 'erasing' operation occurs using a
sample pixel value, and a line color value, and two XOR operations.

B. Set the 'xor_flag' value to a non-zero value and reassemble, re-execute the program.
What happens now when you try to draw over old lines?

C. Write a procedure called DRAWVLINE that will draw a vertical line based on the passed
parameters: X,Y (dx=X, cx=Y), a delta_Y (line length, bx= delta_Y, can be negative),
linecolor (passed in AH), and an XOR flag passed in AL. Modify the main program so
that a vertical line is drawn instead of a horizontal line when the left mouse button is
clicked and dragged. Include the assembled listing of this program in your report.
(HINT: most of the code in DRAWHLINE can be reused but you will need to
increment/decrement the SI register by a different value)

B. Windows Bitmap files
A portion of the example hline2.asm program is shown below. This program is a duplicate of the
hline.asm program except that a bitmap file is first loaded into video memory.

.model small

.586

.stack 200h

.data
ifile db "h:\tmp\lab9\tpic.bmp",0
vmode db 0
vpage db 0
mse_x dw 0 ;mouse X
mse_y dw 0 ;mouse Y
del_x dw 0 ;delta x
xor_flag db 0
linecolor db 15 ; color 15 on default palette is WHITE

.code
extrn ShowBMP:proc

main proc
 mov ax,@data
 mov ds,ax
 mov ah,0Fh ; get current video mode
 int 10h
 mov vmode,al
 mov vpage,bh ; save vid mode

 mov dx,offset ifile
 call ShowBMP ;; expects 320x200x256 bitmap file

 mov ax,01 ;enable the mouse
 int 33h

….. the rest of this program is the SAME as hline.asm

The program hline2.asm uses an external procedure called ShowBMP (found in Chapter 12 of the
Irvine text and in the bitmap.asm file) to load a 320x200x256 bitmap file into video memory. The
pathname of the file must be passed as a null-terminated string in DS:DX (the label 'ifile' shows
you where I placed the file in my system, the 'tpic.bmp' file is available on the WWW page of this
lab). If you place the bitmap file in a different location, be sure to edit this pathname (because it
is a DOS pathname, make sure that all directory names in the path are 8 characters or less).

A windows bitmap file contains its own color palette for the image in the file, so part of the
loading process sets the color palette to the palette found in the bitmap file.

Because of its length, the ShowBMP procedure is in a separate file (bitmap.asm). Assemble this
file and produce a bitmap.obj file. Assemble the hline2.asm file and produce a hline2.obj file. To
link these files together into one executable, do "link hline2+bitmap" . You will also need to
specify the irvine.lib library when prompted for a library.

Lab Question 2: Assemble this program, execute it and draw several lines. Explain the
differences between the lines you now see and the lines drawn by the original hline.asm program
in your lab report. Set the xor_flag to a non-zero value and re-assemble, re-execute. Explain the
differences between the lines you now see and the lines drawn by the original hline.asm program.

C. A Programming Task - A Rubber-banding Selection Box
Pick an empty spot on your Windows 95/98/ME/NT/2000/XP/MS/IS/EVL desktop/laptop, click
the left button, and drag the mouse around. You see that 'rubber banding' selection rectangle that
disappears when you release the left mouse button? Good -- your job is to modify the hline2.asm
example so that you can duplicate this effect.

It is not as difficult as it may seem at first glance. When the left mouse button is initially pressed,
write the X,Y position to memory locations: START_X, START_Y and LAST_X, LAST_Y.
Then, enter a loop that continually reads the mouse position and button status. If the new position
is different from the values in LAST_X, LAST_Y do the following:

A. If it is the FIRST time that the new X,Y is different from the LAST_X, LAST_Y values,
draw a BOX with one corner being START_X, START_Y and the other corner being the
new X,Y. Save the X,Y values in the LAST_X, LAST_Y memory locations. Make sure
that you draw the two horizontal lines and two vertical lines that make up the box with
the XOR mode turned on. You MUST hide the cursor before drawing any lines.

B. If it is not the first time that the new X,Y is different from the LAST_X, LAST_Y values,
then you need to erase the last drawn box. This can be done by simply redrawing the box
that was drawn last time (corners at START_X, START_Y and LAST_X, LAST_Y).
After this box is drawn (the XOR mode causes this box to be 'erased'), draw a new box
with corners at START_X, START_Y and the nex X,Y. Save the new X,Y values in the
locations LAST_X, LAST_Y. Make sure that all lines are drawn (for both boxes) with
the XOR mode turned on. You MUST hide the cursor before drawing any lines.

When the left mouse button is released, your program should exit the box drawing loop and re-
enter the main loop to wait for another left mouse click. You must erase the last box that was
drawn by drawing a box with corners at START_X, START_Y and LAST_X, LAST_Y. Note
that the values of START_X, START_Y never change after the left mouse button is pressed so
one corner of the rubber-banding rectangle is always fixed.

You will need to use the horizontal and vertical line drawing subroutines from section A to
implement the box drawing procedure.

Lab Question 3: Include the assembled listing of this program in your lab report and make sure
that you have at least one comment for every two x86 instruction lines.

Lab Report

A. Describing What You Learned
Include the answers to all "Lab Questions" in your report.

B. Applying What You Learned
Demonstrate the programs you wrote for Lab Questions 1 and 3 to the TA.

