

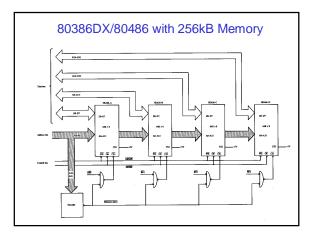
	Memory Banks					
•	8086/186/286/386SX has 16 Data Lines D15-D0, HM62864 Only Has 8 I/O7 – I/O0					
•	 Must Use a "Memory Bank" 1 SRAM for Storing Bytes with "Even Addresses" (0₂) 1 SRAM for Storing Bytes with "Odd" Addresses" (1₂) 8086 has BHE Control Signal – (Bank High Enable) Can Use Combination of A0 and BHE to Determine Type of Access 					
		BHE 0 1 1	A0 0 1 0 1	Access Type 1 word (16-bits) Odd Byte (D15-D8) Even Byte (D7-D0) No Access		

86,186,286,386SX Memory Interface

- Connect CPU A16-A1 Outputs to Memory Chip A15-A0 Inputs
- Use A0 and BHE to "Select" the Correct Memory Chip
- "Bank Select" Circuit

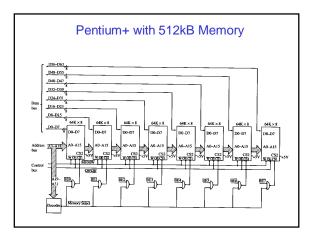
Misaligned Access

• 1 Word = 16 bits - Can Have a Misaligned Access


1.1		- Kaus - d
MSB	LSB	Access

odd	even	aligned
-----	------	---------

- even odd misaligned
- Misaligned Words Require 2 Bus Cycles! (2)(2.3T)=4.6T
 1) Access LSB (odd) Byte on D15-D8
 - 2) Access MSB (even) Byte on D7-D0
- "Aligning" Program Data Can Speed Up Execution
 - "Wastes" Memory (fragments RAM)
 - Most Optimizing Compilers do it Automatically
 - Up to Assembler Language Programmer


80386DX and 80486 Memory Interface (32 bit)

- 4 Banks of Byte-Wide RAM Required
- With HM62864 Minimum Memory Size is 256kB
 - need 4 of these 64k×8 Chips
- These Processors are Restricted to Aligned Access
 - Do Not Have A1, A0 Pins
 - Do Have BE3, BE2, BE1, BE0 (Byte Enables)
- Memory Bank is Selected Using the Byte Enable Signals

Pentium+ Memory Interface

- 8 Banks of Byte-Wide RAM Required
- With HM62864 Minimum Memory Size is512kB
 - need 8 of these 64k×8 Chips
 - at least 1 chip per bank (byte)
- These Processors are Restricted to Aligned Access
 - Do Not Have A2, A1, A0 Pins
 - Do Have BE7 BE0 (Byte Enables)
- Memory Bank is Selected Using the Byte Enable Signals

Address Decoding

General

- 1) MS Address Lines Used as Decoder Inputs
- 2) LS Address Lines Used to Select Memory Banks
- 3) "Middle Address Lines" Connected Directly to Memory Chip Address Inputs
- Address Decoder
 - Circuit with MS Address Lines as Inputs
 - Output is the Chip Select (CS) Signal(s)
- Address Decoder Logic "Decides" Where Memory is
 - Located
 - Memory Map
- Book Reviews Logic Design PALs, CUPL, etc. Read This On Your Own

XT Memory Map						
00000h	IVT	"Interrupt Vector Table"				
00400h	BIOS DATA	"keyboard status bytes, disk parm. tables, etc."				
00500h	DOS/BASIC Reserved	"COMMAND.COM, IO.SYS, MSDOS.SYS"				
00600h	USER Space	"Application Programs and Data"				
A0000h	Video Buffer	"Dual-Port RAM Containing Display Pages"				
C0000h	BIOS Expansions	"EGA BIOS, PGA Comm., XT HD, etc."				
E0000h	BIOS Extensions	"SCSI Controller Card BIOS, NIC BIOS, etc. – ROM"				
F0000h FFFFFh	ROM BIOS	"POST, Bootstrap, ROM-BIOS ISRs"				

