Instruction Format

7 0y
low addr opcode | d | w
mod reg r/m
optional Low Displacement or Immediate
optional High Displacement or Immediate
optional Low Immediate
high addr optional High Immediate

opcode 6-bit value that specifies instruction type

d is 1-bit value that specifies destination
d=0 for memory and d=1 for register

w is 1-bit value that specifies if destination is word or byte
w=0 for byte and w=1 for word

Instruction Format (Cont.)

7 0y
low addr opcode | d | w
mod | reg | r/m
optional Low Displacement or Immediate
optional High Displacement or Immediate
optional Low Immediate
high addr optional High Immediate

mod is 2-bit value that indicates addressing mode
(along with r/m value)

reg is 3-bit value that specifies a (destination) register
(see table to right)

1/m is 3-bit value that specifies operand location
(r/m means register/memory)

Instruction Format (Cont.)

7 0y
low addr opcode | d | w
mod | reg | r/m
optional Low Displacement or Immediate
optional High Displacement or Immediate
optional Low Immediate
high addr optional High Immediate

Displacement may be either 8 or 16 bits
- signed integer encoded into instruction
- used in computation of operand address

Immediate may be 8, 16 or 32 bits
- signed integer
- used as an actual operand

Instruction Format Example

7 0y
low addr opcode | d | w
mod | reg | r/m
optional Low Displacement or Immediate
optional High Displacement or Immediate
optional Low Immediate
high addr optional High Immediate
Consider the Instruction: mov ax, bx
The Assembler translates this into: 8B C3
opcode is: 100010 nov
dis: 1 destination is register
wis: 1 destination size = 1 word
mod is: 11 this indicates that r/m specifies a register
regis: 000 destination register is ax
rimis: 011 source register is bx

Assembler versus Machine Code

ADD AX, BX ; AX gets val ue AX+BX
SuB AX, BX ; AX gets val ue AX-BX
AND AX, BX ; AX gets bitwi se AND of AX and BX
INC AX ;AX gets its original value plus 1
DEC BX ;BX gets its original value minus 1
MOV AX, BX ; AX gets values in BX
lASSEMBLER 93ee: dble |01 |al9fe
93ee: dblf |D8 |al9ff
93ee: db20 |29 [ala00
01 D8 01 D8 93ee: db21 |D8 [alall
29 DB LINKER 29 D8 orper 93ee: db22 |21 [ala02
21 D8 » 21 D8 » 93ee: db23 |D8 [ala03
40 40 93ee: db24 |40 [ala04
4B 4B 93ee: db25 |4B |ala05
8B C3 8B C3 93ee: db26 |8B |ala06
93ee: db27 |C3 [ala07
logical physical physical
address memory address
Operand types

1) Register - Encoded in Instruction
« Fastest Executing
* No Bus Access (in Instr. Queue)
« Short Instruction Length

2) Immediate - Constant Encoded in Instruction
* 8 or 16 bits
* No Bus Access (in Instr. Queue)
« Can only be Source Operand

3) Memory - Requires Bus Transfer
» Can Require Computation of Address
» Address of Operand DATA is Called

EFFECTIVE ADDRESS

Operand in Memory

1) Resident at an Address
« Fastest Executing
* No Bus Access (in Instr. Queue)
« Short Instruction Length

2) Immediate - Constant Encoded in Instruction
* 8 or 16 bits
* No Bus Access (in Instr. Queue)
« Can only be Source Operand

3) Memory - Requires Bus Transfer
» Can Require Computation of Address
» Address of Operand DATA is Called

EFFECTIVE ADDRESS

Effective Address

» Computed by EU

« In General,

di spl acement + base register + index register

» Any Combination of These 3 Values
— Leads to Several Different Addressing Modes

« Displacement
— 8 or 16 bit Constant in the Instruction
— “base register” Must be BX or BP
—“index register” Must be SI or DI

Addressing Modes

CLASSIFICATION | CLASSIFICATION Il
Register/Register *Register/Register*
sImmediate* eJimmediate*
«Direct «Direct

*Register Indirect eIndirect

*Based —Register Indirect
sIndexed -Based

*Based Indexed :g:::(?(ljndexed
+String +String

*lfO Port -l/O Port

*Considered to be Addressing Modes by Some People
although the Technically Involve No Memory Accesses

Direct Addressing

mov [7000h], ax

nmov es:[7000h], ax 26 A3 00 70
prefix byte

- longer instruction
- more fetch time

opcode mod r/m I displadement

effective address

Register Indirect Addressing

mov al, [bp] ;al gets 8 bits at SS:BP
mov ah, [bx] ;ah gets 8 bits at DS: BX
mov ax, [di] ;ax gets 16 bits at DS: Sl
mov eax, [si] ;eax gets 32 bits at DS: Sl
BX
Q S effectve address
DI
Based Indirect Addressing
nov al, [bp+2] ;al gets 8 bits at SS: BP+2
nov ah, [bx-4] ;ah gets 8 bits at DS: BX-4

opcode [modrim I

effective address

Indexed Indirect Addressing

nov ax, [di +1000h] ;ax gets 16 bits at DS:SI+1000h
nov eax, [si +300h] ;eax gets 32 bits at DS: Sl +300h
opcode | modr/m I

effective address

Based Indexed Indirect Addressing

nov ax, [bp+di] ;ax gets 16 bits at SS:BP+DI

nov ax, [di +bp] ;ax gets 16 bits at DS: BP+DI

nov eax, [bx+si +10h] ;eax gets 32 bits at DS: BX+Sl +10h

nov cX, LI ST[bp+si-7] ;cx gets 16 bits at SS:BP+SI-7
opcode | modr/m I !

effective address

Addressing Mode Examples

mov al, bl ;8-bit register addressing

mov di, bp ;16-bit register addressing Register
nov_eax, eax 1 32-bit register addressing

mov al, 12 ;8-bit imediate, al<-0ch

mov cx, faceh ;16-bit irmmediate, cx<-64,206 Immediate
mov ebx, 2h ;32-bit i mediate, ebx<-00000002h

mov al, LI ST ;al<-8 bits stored at |abel LIST

mov ch, DATA ;ch<-8 bits stored at |abel DATA Direct
nmov ds, DATA2 ;ds<-16 bits stored at |abel DATA2

wov al, [bp] Tal<-8 bits stored at SS BP

nmov ah, [bx] ;ah<-8 bits stored at DS BX

nov ax, [bp] ;ax<-16 bits stored at SS:BP

nov eax, [bx] ;eax<-32 bits stored at DS: BX

nov ax, es: [bp] ;ax<-16 bits stored at SS:DI

nmov al, [bp+2] ;al<-8 bits stored at SS:(BP+2) Based
nov ax, [bx-4] ;ax<-16 bits stored at DS:(BX-4)

nmov al, LI ST[bp] ;al<-8 bits stored at SS:(BP+LIST)

nmov bx, LI ST bx] ;bx<-16 bits stored at DS:(BX+LIST)

nmov al, LI ST[bp+2] ;al<-8 bits stored at SS:(BP+2+LI ST)

nov ax, LI ST[bx-12h] ; ax<-16 bits stored at DS:(BX-

18+LI ST)

More Addressing Mode Examples

mov al, [si] ;al<-8 bits stored at DS Sl
mov ah, [di] ;ah<-8 bits stored at DS DI
nmov ax, [si] ;ax<-16 bits stored at DS: S|
nov eax, [di] ;eax<-32 bits stored at DS: DI
mov ax, es: [di] ;ax<-16 bits stored at ES:DI Indexed
nmov al, [si+2] ;al<-8 bits stored at DS (SI+2)
nov ax, [di-4] ;ax<-16 bits stored at DS:(Di-4)
nmov al, LI ST[si] ;al<-8 bits stored at DS:(SlI+LIST)
nmov bx, LI ST[di] ;bx<-16 bits stored at DS: (Dl +LI ST)
nov al, LI ST[si +2] ;al<-8 bits stored at DS: (Sl +2+LI ST)
nov_ax, LI ST[di -12h] ; ax<-16 bits stored at DS: (Dl -18+LI ST)
nmov al, [bp+di] ;al<-8 bits from SS: (BP+Dl)
nmov ah, ds: [bp+si] ;ah<-8 bits from DS: (BP+Sl) Based
nov ax, [bx+si] ;ax<-16 bits from DS: (BX+Sl) ase
mov eax, es:[bx+di] ;eax<-32 bits from ES: (BX+Dl) Indexed
nmov al, LI ST[bp+di] ;al<-8 bits from SS: (BP+DI +LI ST)
nov ax, LI ST[bx+si] ;ax<-16 bits from DS: (BX+Sl +LI ST)
nov al, LI ST[bp+di - 10h] ;al<-8 bits from SS: (BP+DI - 16+LI ST)
nov ax, LI ST[bx+si +1AFH] ;ax<-16 bits from DS: (BX+Sl +431+LI ST)
String Addressing
* Implicit Register Use
-S| Used for Source EA
—DI Used for Destination EA
« SI, DI point to First (or Last) Byte in Strings
« Useful for Repeated String Operations
—Another Type of Prefix
« Special Subset of String Instructions
novs (movsb, novsw) ;nove a string
cnps (cnpsb, cnpsw) ;conpare two strings
scas (scasb, scasw ;scan (search) string
lods (lodsb, |odsw ;load a string
stos (stosb, stosw) ;store a string
String Addressing
novsh ;ES:DI gets the byte pointed to by DS:SI
nov cx, 10 ;cx gets value 10 decimal (byte counter)
rep novsb ;ES:DI gets the byte pointed to by DS:SI

;D gets Di+1 (or DI-1 depending on DF)
;Sl gets SI+1 (or SI-1 depending on DF)
;CX gets CX-1

;if CXis not 0, do another novsh

cld ;DF gets O (clear or reset), neans increnent
std ;DF gets 1 (set), means decrenent

REPEAT PREFIXES

rep ; Repeat (uses CX as counter)

repe ; Repeat while equal (checks for ZF=1)
repz ;Same as repe, just different mmenonic
repne ; Repeat while not equal (checks for ZF=0)
repnz ;Sane as repne

NOTE: These are “repeat whiles” NOT “repeat untils”

I/O Port Addressing

x86 Family has 65,536 I/O Ports
Each Port has Address (like Memory)
— Referred to as “I/O Memory Space”
I/O Port is 1 byte or 2 bytes
— with 386+ also 4 bytes
Two Addressing Modes
1) Immediate Port Address

- Can only be 1 byte

- Can only Address Ports 00h through ffh
2) Port Address Present in DX

- Can Address all Ports 0000h through ffffh

Can only Use DX for Port Addresses
Can only Use Al,AX,EAX for Port Data

I/O Port Addressing Examples

in al, 40h ;al gets 1 byte fromport 40h
in ax, 255 ;ax gets 2 bytes fromport ffh
in al, dx ;ax gets 1 byte fromport address in dx
in eax, dx ;eax gets 4 bytes fromport addr. in dx
out 80h, al ;send contents of al to port 80h
out dx, eax ;send contents of eax to port addr. in dx
Data Bus
«Address Bus 1
l[e]
Memor -
cPU Y Devices
T Control Bus T

Address Bus is Shared - Control Bus Indicates I/O or Memory

