
1

Instruction Format

opcode d w

mod reg r/m

optional

optional

optional

optional

07

low addr

high addr

Low Displacement or Immediate

High Displacement or Immediate

Low Immediate

High Immediate

opcode 6-bit value that specifies instruction type

d is 1-bit value that specifies destination
d=0 for memory and d=1 for register

w is 1-bit value that specifies if destination is word or byte
w=0 for byte and w=1 for word

Instruction Format (Cont.)

opcode d w

mod reg r/m

optional

optional

optional

optional

07

low addr

high addr

Low Displacement or Immediate

High Displacement or Immediate

Low Immediate

High Immediate

mod is 2-bit value that indicates addressing mode
(along with r/m value)

reg is 3-bit value that specifies a (destination) register
(see table to right)

r/m is 3-bit value that specifies operand location
(r/m means register/memory)

reg w=1 w=0

000 ax al
001 cx cl
010 dx dl
011 bx bl
100 sp ah
101 bp ch
110 si dh
111 di bh

Instruction Format (Cont.)

opcode d w

mod reg r/m

optional

optional

optional

optional

07

low addr

high addr

Low Displacement or Immediate

High Displacement or Immediate

Low Immediate

High Immediate

Displacement may be either 8 or 16 bits
- signed integer encoded into instruction
- used in computation of operand address

Immediate may be 8, 16 or 32 bits
- signed integer
- used as an actual operand

2

Instruction Format Example

opcode d w

mod reg r/m

optional

optional

optional

optional

07

low addr

high addr

Low Displacement or Immediate

High Displacement or Immediate

Low Immediate

High Immediate

Consider the Instruction: mov ax, bx

The Assembler translates this into: 8B C3

opcode is: 100010 mov

d is: 1 destination is register
w is: 1 destination size = 1 word
mod is: 11 this indicates that r/m specifies a register
reg is: 000 destination register is ax
r/m is: 011 source register is bx

Assembler versus Machine Code

ADD AX, BX ;AX gets value AX+BX
SUB AX, BX ;AX gets value AX-BX
AND AX, BX ;AX gets bitwise AND of AX and BX
INC AX ;AX gets its original value plus 1
DEC BX ;BX gets its original value minus 1
MOV AX, BX ;AX gets values in BX

01 D8
29 D8
21 D8
40
4B
8B C3

01 D8
29 D8
21 D8
40
4B
8B C3

01
D8
29
D8
21
D8
40
4B
8B
C3

a19fe
a19ff
a1a00
a1a01
a1a02
a1a03
a1a04
a1a05
a1a06
a1a07

93ee:db1e
93ee:db1f
93ee:db20
93ee:db21
93ee:db22
93ee:db23
93ee:db24
93ee:db25
93ee:db26
93ee:db27

logical
address

physical
memory

physical
address

ASSEMBLER

LINKER LOADER

Operand types
1) Register - Encoded in Instruction

• Fastest Executing
• No Bus Access (in Instr. Queue)
• Short Instruction Length

2) Immediate - Constant Encoded in Instruction
• 8 or 16 bits
• No Bus Access (in Instr. Queue)
• Can only be Source Operand

3) Memory - Requires Bus Transfer
• Can Require Computation of Address
• Address of Operand DATA is Called

EFFECTIVE ADDRESS

3

Operand in Memory
1) Resident at an Address

• Fastest Executing
• No Bus Access (in Instr. Queue)
• Short Instruction Length

2) Immediate - Constant Encoded in Instruction
• 8 or 16 bits
• No Bus Access (in Instr. Queue)
• Can only be Source Operand

3) Memory - Requires Bus Transfer
• Can Require Computation of Address
• Address of Operand DATA is Called

EFFECTIVE ADDRESS

Effective Address

• Computed by EU

• In General,

displacement + base register + index register

• Any Combination of These 3 Values
– Leads to Several Different Addressing Modes

• Displacement
– 8 or 16 bit Constant in the Instruction
– “base register” Must be BX or BP
– “index register” Must be SI or DI

Addressing Modes

•Register/Register*
•Immediate*
•Direct
•Register Indirect
•Based
•Indexed
•Based Indexed
•String
•I/O Port

•Register/Register*
•Immediate*
•Direct
•Indirect

–Register Indirect
–Based
–Indexed
–Based Indexed

•String
•I/O Port

*Considered to be Addressing Modes by Some People,
although the Technically Involve No Memory Accesses

CLASSIFICATION I CLASSIFICATION II

4

Direct Addressing

mov [7000h], ax

mov es:[7000h], ax

opcode mod r/m displacement

effective address

ds:7000h ax

es:7000h ax

26 A3 00 70

A3 00 70

prefix byte
- longer instruction
- more fetch time

Register Indirect Addressing
mov al, [bp] ;al gets 8 bits at SS:BP

mov ah, [bx] ;ah gets 8 bits at DS:BX

mov ax, [di] ;ax gets 16 bits at DS:SI

mov eax, [si] ;eax gets 32 bits at DS:SI

opcode mod r/m

BX

effective address
BP

SI

DI

“OR”

Based Indirect Addressing

mov al, [bp+2] ;al gets 8 bits at SS:BP+2

mov ah, [bx-4] ;ah gets 8 bits at DS:BX-4

BX

effective address

BP
+

opcode mod r/m displacement

5

Indexed Indirect Addressing

mov ax, [di+1000h] ;ax gets 16 bits at DS:SI+1000h

mov eax, [si+300h] ;eax gets 32 bits at DS:SI+300h

DI

effective address

SI
+

opcode mod r/m displacement

Based Indexed Indirect Addressing

mov ax, [bp+di] ;ax gets 16 bits at SS:BP+DI

mov ax, [di+bp] ;ax gets 16 bits at DS:BP+DI

mov eax, [bx+si+10h] ;eax gets 32 bits at DS:BX+SI+10h

mov cx, LIST[bp+si-7] ;cx gets 16 bits at SS:BP+SI-7

DI

effective address

SI
+

opcode mod r/m displacement

BX

BP
+

Addressing Mode Examples

mov al, bl ;8-bit register addressing
mov di, bp ;16-bit register addressing
mov eax, eax ;32-bit register addressing
mov al, 12 ;8-bit immediate, al<-0ch
mov cx, faceh ;16-bit immediate, cx<-64,206
mov ebx, 2h ;32-bit immediate, ebx<-00000002h
mov al, LIST ;al<-8 bits stored at label LIST
mov ch, DATA ;ch<-8 bits stored at label DATA
mov ds, DATA2 ;ds<-16 bits stored at label DATA2
mov al, [bp] ;al<-8 bits stored at SS:BP
mov ah, [bx] ;ah<-8 bits stored at DS:BX
mov ax, [bp] ;ax<-16 bits stored at SS:BP
mov eax, [bx] ;eax<-32 bits stored at DS:BX
mov ax, es:[bp] ;ax<-16 bits stored at SS:DI
mov al, [bp+2] ;al<-8 bits stored at SS:(BP+2)
mov ax, [bx-4] ;ax<-16 bits stored at DS:(BX-4)
mov al, LIST[bp] ;al<-8 bits stored at SS:(BP+LIST)
mov bx, LIST[bx] ;bx<-16 bits stored at DS:(BX+LIST)
mov al, LIST[bp+2] ;al<-8 bits stored at SS:(BP+2+LIST)
mov ax, LIST[bx-12h] ;ax<-16 bits stored at DS:(BX-
18+LIST)

Register

Immediate

Direct

Based

6

More Addressing Mode Examples

mov al, [si] ;al<-8 bits stored at DS:SI
mov ah, [di] ;ah<-8 bits stored at DS:DI
mov ax, [si] ;ax<-16 bits stored at DS:SI
mov eax, [di] ;eax<-32 bits stored at DS:DI
mov ax, es:[di] ;ax<-16 bits stored at ES:DI
mov al, [si+2] ;al<-8 bits stored at DS:(SI+2)
mov ax, [di-4] ;ax<-16 bits stored at DS:(DI-4)
mov al, LIST[si] ;al<-8 bits stored at DS:(SI+LIST)
mov bx, LIST[di] ;bx<-16 bits stored at DS:(DI+LIST)
mov al, LIST[si+2] ;al<-8 bits stored at DS:(SI+2+LIST)
mov ax, LIST[di-12h] ;ax<-16 bits stored at DS:(DI-18+LIST)
mov al, [bp+di] ;al<-8 bits from SS:(BP+DI)
mov ah, ds:[bp+si] ;ah<-8 bits from DS:(BP+SI)
mov ax, [bx+si] ;ax<-16 bits from DS:(BX+SI)
mov eax, es:[bx+di] ;eax<-32 bits from ES:(BX+DI)
mov al, LIST[bp+di] ;al<-8 bits from SS:(BP+DI+LIST)
mov ax, LIST[bx+si] ;ax<-16 bits from DS:(BX+SI+LIST)
mov al, LIST[bp+di-10h] ;al<-8 bits from SS:(BP+DI-16+LIST)
mov ax, LIST[bx+si+1AFH] ;ax<-16 bits from DS:(BX+SI+431+LIST)

Indexed

Based
Indexed

String Addressing
• Implicit Register Use

–SI Used for Source EA
–DI Used for Destination EA

• SI, DI point to First (or Last) Byte in Strings

• Useful for Repeated String Operations
–Another Type of Prefix

• Special Subset of String Instructions

movs (movsb, movsw) ;move a string
cmps (cmpsb, cmpsw) ;compare two strings
scas (scasb, scasw) ;scan (search) string
lods (lodsb, lodsw) ;load a string
stos (stosb, stosw) ;store a string

String Addressing

movsb ;ES:DI gets the byte pointed to by DS:SI

mov cx, 10 ;cx gets value 10 decimal (byte counter)
rep movsb ;ES:DI gets the byte pointed to by DS:SI

;DI gets DI+1 (or DI-1 depending on DF)
;SI gets SI+1 (or SI-1 depending on DF)
;CX gets CX-1
;if CX is not 0, do another movsb

cld ;DF gets 0 (clear or reset), means increment
std ;DF gets 1 (set), means decrement

REPEAT PREFIXES
rep ;Repeat (uses CX as counter)
repe ;Repeat while equal (checks for ZF=1)
repz ;Same as repe, just different mnemonic
repne ;Repeat while not equal (checks for ZF=0)
repnz ;Same as repne

NOTE: These are “repeat whiles” NOT “repeat untils”

7

I/O Port Addressing
• x86 Family has 65,536 I/O Ports
• Each Port has Address (like Memory)

– Referred to as “I/O Memory Space”

• I/O Port is 1 byte or 2 bytes
– with 386+ also 4 bytes

• Two Addressing Modes
1) Immediate Port Address

- Can only be 1 byte
- Can only Address Ports 00h through ffh

2) Port Address Present in DX
- Can Address all Ports 0000h through ffffh

• Can only Use DX for Port Addresses
• Can only Use Al,AX,EAX for Port Data

I/O Port Addressing Examples
in al, 40h ;al gets 1 byte from port 40h

in ax, 255 ;ax gets 2 bytes from port ffh

in al, dx ;ax gets 1 byte from port address in dx

in eax, dx ;eax gets 4 bytes from port addr. in dx

out 80h, al ;send contents of al to port 80h

out dx, eax ;send contents of eax to port addr. in dx

I/O
Devices

MemoryCPU

Data Bus
Address Bus

Control Bus

Address Bus is Shared - Control Bus Indicates I/O or Memory

