
1

BR 6/00 1

How Do We Connect Multiple Devices?
• A common need in a computer system is for

multiple devices to communicate with each other
• Two extremes are a Crosspoint Switch and a Bus
• A Crosspoint switch is very expensive in terms of

hardware
– Allows multiple devices to communicate at the same

time (parallelism)
– High Data Bandwidth

• A bus is very cheap in terms of hardware, but only
two devices can communicate at time

BR 6/00 2

Crossbar Switch Adding more
devices adds
more
switches
(grows as N2)

Multiple
devices can
talk at a time.

BR 6/00 3

A Bus

d1 d2 d3 d4

• Only one device can talk at a time
• All devices on bus can listen (broadcast)
• If all devices can listen while one device talks,

then the connection is called a BUS despite the
number of signals used, physical signaling, etc.

• When a device is not talking on the bus, its output
signals are disabled (tri-stated)

2

BR 6/00 4

Bus Classifications
• One way to classify busses is to divide them into

System, Backplane, and Peripheral busses
– This classification is based on what types of devices are

connected to the devices

• Another classification is Parallel versus Serial data
transfer

• Yet another classification is Asynchronous versus
Synchronous
– Asynchronous – data transfer without a clock

BR 6/00 5

System Bus
• The System bus is the bus that connects directly to the pins

of the processor. Also known as the processor-memory
bus.
– These days the system bus only has cache memory connected to it

and the ‘system chipset’
– Multiple processors may connect to the system bus
– The system chipset will transfer the data between the system bus

and any other busses that are in the system (will act as a bridge
between the system bus and other busses).

• A System bus is proprietary, and is dependent upon the
processor type
– AMD, Intel have different system busses
– A Pentium III and a Pentium IV have different system busses

BR 6/00 6

Backplane Bus
• A backplane bus is a bus that stays ‘inside the

box’ (cards will plug into bus via slots on
motherboard) and forms a high speed path
between memory and the peripherals
– Will be a high bandwidth bus (wide and fast --- parallel

bus clocked at high rate)
– lines run a short distance
– The PCI (Peripheral Component Interconnect) bus is a

local bus
– System chipset connects the PCI bus to the procesor

(system) bus.
• A backplane bus is usually standardized – the PCI

bus is found in systems using Intel, AMD
processors.

3

BR 6/00 7

Latency versus Throughput
• Latency is the time from when an operation is started to

when the data is ready
• Throughput is operations per unit time
• Best case is low latency and high throughput, but these are

usually traded off against one another for a FIXED bus
clock speed.

• Backplane busses are intended to provide low latency first,
then as much Throughput as possible
– When an IO device connected to a backplane bus needs servicing,

don’t want it to wait very long.

• Achieve low latency by limiting the amount of time one
device can hold the bus for transfering data.

BR 6/00 8

Peripheral Busses

• A Peripheral bus is a bus that goes ‘outside the
box’ to connect peripherals to memory.
– Will NOT be as high bandwidth as system bus
– Will support a wide range of speeds
– Can be either serial (Firewire, USB) or parallel (SCSI)
– lines can run a long distance compared to system busses
– Firewire, USB, SCSI (disks, scanners, CDROMs),

EIDE (disks, CDROMs) are peripheral busses.
• Peripheral busses are meant to deal with devices

with widely varying latency

BR 6/00 9

Characteristics of System, Backplane,
Peripheral Busses

System
Busses

CPU

Backplane
Busses

Peripheral
Busses

distance
from
CPU

far

near

Pin
Count

high

low

Bandwidth
(throughput
)

high

low

parallel,
clocked

parallel,
clocked

parallel or
serial, sync or
async.

low

high

latency

4

BR 6/00 10

Direct Memory Access (DMA)

• Direct Memory Access (DMA) is when a device other than
the processor controls the transfer of data between memory
and an IO device

• A DMA controller is specialized logic that is optimized for
this task

• A DMA channel is the set of control lines that a DMA
controller uses to perform the transfer
– DMA controller can have multiple channels so that

DMA can be performed for multiple devices

BR 6/00 11

DMA (cont).
• At a minimum, a DMA operation needs the channel

number (which IO device that requires the DMA), a start
address in memory for the transfer, the number of bytes to
transfer, and the direction of the transfer (from IO to
memory, or vice-versa)

• The processor kicks off the DMA by a write to a control
register in the DMA controller

• When DMA is finished, the DMA controller interrupts the
processor.

• DMA is more efficient at transferring block data between
IO device and memory than the CPU -- also, CPU is freed
to perform other tasks.

BR 6/00 12

Bus Mastership

• DMA is an example of where the processor turns control
of the bus over to another device

• When a device has control of a bus, it is known as the Bus
Master

• In early system busses, only the processor and DMA
controller could have ownership of the bus (become Bus
Master)

• Modern system busses (e.g. PCI) allow any IO device to
become bus master – an IO device that can become bus
master can performs DMA to memory itself instead of the
DMA controller
– If all IO cards can become bus master, then don’t need a separate

DMA controller.

5

BR 6/00 13

Bus Arbitration

• A piece of control logic known as the ‘arbiter’ must decide
which device gets ownership of the bus. This control
logic resides in the system chipset.

• Two lines are used for each peripheral that can assume bus
mastership
– Bus Request – used by peripheral to ask for control of a bus (input

to arbiter)
– Bus Grant – used by arbiter to grant the bus to the peripheral

(output to arbiter)
• A peripheral typically has control of the bus for maximum

number number of clock cycles (typically 32) before it has
to release control of the bus back to the arbiter.

BR 6/00 14

Bus Arbiter
Arbiter

Device 1

Br Bg

Device 2

Br Bg

Device

Br Bg

Backplane Bus, e.g PCI Number of Br/Bg pairs determines
maximum number of devices on bus
(i.e. ‘slots’ on bus)Br: Bus Request, Bg: Bus

Grant

BR 6/00 15

Bus Signals
• Signals on System Busses, Backplane busses can

be divided into three categories
– Address, Data, Control

• Address, Data pins can be multiplexed to reduce
pin count
– Multiplexing address/data usually reduces bandwidth

• Typical Control Signals
– Clock
– Interrupt Request/Acknowledge
– Bus Arbitration
– Transfer control (Read/Write, Command bus that

identifies type of transfer, burst mode, single word,
etc).

6

BR 6/00 16

1CLK

PCI Read Transaction

2 3 4 5 6 7 8 9

FRAME#

address data1 data2
AD[31:0]

data3

bus cmd
C/BE[3:0]#

byte enables for data

IRDY#

TRDY#

DEVSEL#

da
ta

 tr
an

sf
er

w
ai

t

w
ai

t

da
ta

 tr
an

sf
er

da
ta

 tr
an

sf
er

w
ai

t

address
phase

data
phase

data
phase

data
phase

bus transaction

BR 6/00 17

1CLK

PCI Write Transaction

2 3 4 5 6 7 8 9

FRAME#

address
AD[31:0]

data3

bus cmd
C/BE[3:0]#

byte enables for data

IRDY#

TRDY#

DEVSEL#

w
ai

t

w
ai

t

da
ta

 tr
an

sf
er

w
ai

t

address
phase

data
phase

data
phase

data
phase

bus transaction

data1 data2

da
ta

 tr
an

sf
er

da
ta

 tr
an

sf
er

BR 6/00 18

Read, Write Transactions
• Master drives FRAME#, Bus command, provides address,

provides data (write only)
• Target (slave) decodes address, provides data (read),

accepts data (write)
– For READ, turnaround cycle needed on AD for target to drive

Address/data lines with data
– For READ, initial latency of data from address is at least 1 cycle

(turnaround)
– For WRITE, data can follow on cycle immediately after address

• Data can be transferred every clock. Wait cycles can be
inserted by either Master or Slave
– IRDY# driven by master to indicate it is ready to provide data
– TRDY# driven by target to indicate it is ready to provide data
– Both IRDY# and TRDY# must be asserted to perform a data

transfer

7

BR 6/00 19

1 2 3 4 5 6 7
CLK

REQ#-a

REQ#-b

GNT#-a

GNT#-b

FRAME#

address data address data

PCI Basic Arbitration

access - A access - B

AD

hi-Z

hi-Z active drive

A

B

C

D

E

F

F

G

BR 6/00 20

Notes on Arbitration

A Device A has its request line asserted, requesting the bus.

B Device B asserts its request line, also requesting the bus.

C Arbiter grants Device A the bus since it had its request line asserted
before Device B.

D Device A asserts FRAME#, indicating that it is the current bus master.
Device A sends address, data – transaction completed in cycle 4. Device
negates FRAME#, releasing bus, but keeps its request asserted,
indicating that it desires another transaction.

E Arbiter grants bus to Device B by asserting GNT#-b and negating
GNT#-a. Device B must have higher priority than Device A.

F Device B only requires bus for one transaction, so negates its request
while asserting FRAME#, indicating it is the bus master – the
transaction is completed in cycle 6.

G Arbiter grants Device A the bus by asserting GNT#-a, and negating
GNT#-a.

BR 6/00 21

Theoretical Maximum (Peak) Bandwidth
• Peak Bandwidth of PCI is:

bytes per clock * clk freq = MB/s
• 32 bit bus, 33 Mhz: 4 * 33 Mhz = 132 MB/s
• 64 bit bus, 66 Mhz: 8 * 66 Mhz = 528 MB/s
• PCI cannot achieve peak bandwidth. Many factors

contribute to not reaching peak bandwidth
– turnaround cycles on a bus are “dead” cycles (no data transferred)
– handoff cycles from one bus master to another bus master
– address phase of transaction does not transfer data

• Clocks for a PCI transaction is initial target latency
(includes time for address phase) + data phases (assume 1
clk/data phase).

8

BR 6/00 22

Synchronous vs. Asynchronous
• Synchronous Transfer

– Clock signal included in bus. Transfer can occur on a
single edge (either rising or falling) or on both edges
(double-pumped)

– Clock encoded with data (i.e, Data strobe signaling via
IEEE Firewire)

• Asynchronous Transfer
– Handshaking lines controls data transfer

• Synchronous bus usually higher bandwidth than
asynchronous bus

BR 6/00 23

Synchronous Transfer

Write
Signal

Data transferred on
rising edge

Glitches during clock
period are ignored if
not near edge.

A problem with clocked busses is that the slowest device sets the
clock frequency! All devices must be able to communicate at the
bus speed.

New Data New Data

BR 6/00 24

Asynchronous Transfer (four-phase)

New Dataold Data

data captured by slave during this period
Different speed devices easily supported.

Noise on handshaking lines can be a problem

The above protocol is called “four-phase” handshaking. All
signals start a ‘0’ and end at ‘0’ after data transfer.

9

BR 6/00 25

Asynchronous Transfer (two-phase)

Master

Slave

New Data

data captured by
slave here

Two-phase transfer – data transfer occurs on each
transition of handshaking signals.

New Data New Data

BR 6/00 26

Methods for Increasing Bus Transfer Rates
• Make Data bus wider

– Increases pin count, cost
– Increases noise – more signal transitions, more current

draw, more noise
• Increase clock speed

– Not all devices on bus may be able to talk at new clock
rate

• Clock data on both edges
– Good solution for bus standards that already have a

fixed clock rate – need a configuration line that
determines if this is a single or double edge clocked
device

BR 6/00 27

Methods for Increasing Bus Transfer
Rates (cont).

• Split Transactions
– A data transaction is composed of two parts: sending the address,

then sending/receiving the data
– Once an address is received, the I/O device may require some time

to locate the data
– A split transaction allows the address to be sent over the bus, then

transactions to other I/O devices can be done while the first device
is locating the data. The transaction is finished at a later time when
the I/O device has retrieved the data.

– Split transactions help eliminate waiting time
• Burst mode transfers – more efficient than single mode

transfers
• Advanced electrical signaling

– RAMBUS limited voltage swing signaling

