How Do We Connect Multiple Devices?

* A common need in a computer system is for
multiple devices to communicate with each other

* Two extremes are a Crosspoint Switch and a Bus

» A Crosspoint switch is very expensive in terms of
hardware

— Allows multiple devices to communicate at the same
time (parallelism)

— High Data Bandwidth

* A bus is very cheap in terms of hardware, but only
two devices can communicate at time

BR 6/00 1

Crossbar Switch Adding more

devices adds
more
crossbar switches

switch (grows as N2)

\ SN — -1 11e-i Muliple

devices can
talk at a time.

Each column can be switching
thought of as a multiplexor element
BR 6/00 2
A Bus
dl d2 d3 d4
Y L k/ A A
1 17 37

* Only one device can talk at a time
* All devices on bus can listen (broadcast)

« If all devices can listen while one device talks,
then the connection is called a BUS despite the
number of signals used, physical signaling, etc.

» When a device is not talking on the bus, its output
signals are disabled (tri-stated)

BR 6/00 3

Bus Classifications

One way to classify busses is to divide them into
System, Backplane, and Peripheral busses

— This classification is based on what types of devices are

connected to the devices

Another classification is Parallel versus Serial data
transfer
Yet another classification is Asynchronous versus
Synchronous

— Asynchronous — data transfer without a clock

BR 6/00 4

System Bus

The System bus is the bus that connects directly to the pins
of the processor. Also known as the processor-memory
bus.
— These days the system bus only has cache memory connected to it
and the ‘system chipset”
— Multiple processors may connect to the system bus
— The system chipset will transfer the data between the system bus
and any other busses that are in the system (will act as a bridge
between the system bus and other busses).
A System bus is proprietary, and is dependent upon the
processor type
— AMD, Intel have different system busses
— A Pentium III and a Pentium IV have different system busses

BR 6/00 5

Backplane Bus

A backplane bus is a bus that stays ‘inside the
box’ (cards will plug into bus via slots on
motherboard) and forms a high speed path
between memory and the peripherals
— Will be a high bandwidth bus (wide and fast --- parallel
bus clocked at high rate)
— lines run a short distance

— The PCI (Peripheral Component Interconnect) bus is a
local bus

— System chipset connects the PCI bus to the procesor
(system) bus.
A backplane bus is usually standardized — the PCI
bus is found in systems using Intel, AMD
processors. BR 6/00 P

Latency versus Throughput

* Latency is the time from when an operation is started to
when the data is ready

» Throughput is operations per unit time

* Best case is low latency and high throughput, but these are
usually traded off against one another for a FIXED bus
clock speed.

» Backplane busses are intended to provide low latency first,
then as much Throughput as possible

— When an IO device connected to a backplane bus needs servicing,
don’t want it to wait very long.

* Achieve low latency by limiting the amount of time one
device can hold the bus for transfering data.

BR 6/00 7

Peripheral Busses

* A Peripheral bus is a bus that goes ‘outside the
box’ to connect peripherals to memory.
— Will NOT be as high bandwidth as system bus
— Will support a wide range of speeds
— Can be either serial (Firewire, USB) or parallel (SCSI)
— lines can run a long distance compared to system busses
— Firewire, USB, SCSI (disks, scanners, CDROMs),
EIDE (disks, CDROMs) are peripheral busses.
* Peripheral busses are meant to deal with devices
with widely varying latency

BR 6/00 8

Characteristics of System, Backplane,
Peripheral Busses

near 1gh

far

BR 6/00

high

low
System parallel,
Busses distance clocked
fi
(1:‘;1’[1} Bandwidth
Backplane C ount (throughput latency | Parallel,
Busses clocked
Peripheral parallel or
Busses i

serial, sync or

a

sync.

Direct Memory Access (DMA)

» Direct Memory Access (DMA) is when a device other than
the processor controls the transfer of data between memory
and an IO device

* A DMA controller is specialized logic that is optimized for
this task

* A DMA channel is the set of control lines that a DMA
controller uses to perform the transfer

— DMA controller can have multiple channels so that
DMA can be performed for multiple devices

BR 6/00 10

DMA (cont).

* At aminimum, a DMA operation needs the channel
number (which IO device that requires the DMA), a start
address in memory for the transfer, the number of bytes to
transfer, and the direction of the transfer (from IO to
memory, or vice-versa)

» The processor kicks off the DMA by a write to a control
register in the DMA controller

* When DMA is finished, the DMA controller interrupts the
processor.

* DMA is more efficient at transferring block data between
10 device and memory than the CPU -- also, CPU is freed
to perform other tasks.

BR 6/00 11

Bus Mastership

DMA is an example of where the processor turns control
of the bus over to another device

‘When a device has control of a bus, it is known as the Bus
Master

In early system busses, only the processor and DMA
controller could have ownership of the bus (become Bus
Master)

Modern system busses (e.g. PCI) allow any 10 device to
become bus master — an IO device that can become bus
master can performs DMA to memory itself instead of the
DMA controller

— Ifall IO cards can become bus master, then don’t need a separate
DMA controller.

BR 6/00 12

Bus Arbitration

* A piece of control logic known as the ‘arbiter’ must decide
which device gets ownership of the bus. This control
logic resides in the system chipset.

* Two lines are used for each peripheral that can assume bus
mastership

— Bus Request — used by peripheral to ask for control of a bus (input
to arbiter)

— Bus Grant — used by arbiter to grant the bus to the peripheral
(output to arbiter)

» A peripheral typically has control of the bus for maximum
number number of clock cycles (typically 32) before it has
to release control of the bus back to the arbiter.

BR 6/00 13
Bus Arbiter
Arbiter
Br Bg Br Bg Br Bg
Device 1 ‘ ‘ Device 2 ‘ eoo ‘ Device

Number of Br/Bg pairs determines
Backplane Bus, ¢.g PCI maximum number of devices on bus

Br: Bus Request, Bg: Bus (i.e. slots’ on bus)

Grant BR 6/00 14

Bus Signals

 Signals on System Busses, Backplane busses can
be divided into three categories
— Address, Data, Control
* Address, Data pins can be multiplexed to reduce
pin count
— Multiplexing address/data usually reduces bandwidth
+ Typical Control Signals
— Clock
— Interrupt Request/Acknowledge
— Bus Arbitration

— Transfer control (Read/Write, Command bus that
identifies type of transfer, burst mode, single word,

etc).
BR 6/00 15

PCI Read Transaction
FRAME# \ /
ADI_—“_“l '<add ess)— {}— < datal) ><Etal data3)— {)—
C/B—EI- :EI% bus de byte enables for data >— {}—
wovd ~ L3N
wows)
DEVS-:I:#_ - E? ;

“
H

2
r

data transfer
wait
data transfer

wait

~ data transfer

g

address data data data
phase phase phase phase
bus transaction 1

PCI Write Transaction

ST AN AL AL AL AL AU S AN
FRAMEF \ /

AD[31;0]

- '<add ess ><Eatal X dalaZ) X data3) {
C/BE[3:01#

=== bus de byte enables for: data)— {
IRDY# @ \ /

J

S

[

—z/ 0\
g E = - = g
—_——— B g) g = —
TRDY# G__g ;s_/_3 z _EJ
b=l 3 k=l
DEVSEL# ? \ \ | L/
i i
address data data data
phase phase phase phase
. 17
- bus transaction I

Read, Write Transactions

* Master drives FRAME#, Bus command, provides address,
provides data (write only)

Target (slave) decodes address, provides data (read),
accepts data (write)

— For READ, turnaround cycle needed on AD for target to drive

Address/data lines with data
— For READ, initial latency of data from address is at least 1 cycle
(turnaround)

— For WRITE, data can follow on cycle immediately after address
+ Data can be transferred every clock. Wait cycles can be
inserted by either Master or Slave

— IRDY# driven by master to indicate it is ready to provide data

— TRDY# driven by target to indicate it is ready to provide data

— Both IRDY# and TRDY# must be asserted to perform a data

transfer

BR 6/00 18

PCI Basic Arbitration

Ak SN S s

-~

A __/

axtra |\ /E E'_
a
S~

/T

FRAME#

AD —+

(N

ess X data)‘ ==== '< address X data
_ -
~ ~

access - A access - B

_____ hi-Z BR 6/00 active drive 19

Notes on Arbitration

Device A has its request line asserted, requesting the bus.

Device B asserts its request line, also requesting the bus.

Arbiter grants Device A the bus since it had its request line asserted
before Device B.

Device A asserts FRAME#, indicating that it is the current bus master.
Device A sends address, data — transaction completed in cycle 4. Device
negates FRAMEH#, releasing bus, but keeps its request asserted,
indicating that it desires another transaction.

(=] [o] [=] [#]

Arbiter grants bus to Device B by asserting GNT#-b and negating
GNT#-a. Device B must have higher priority than Device A.

(=]

Device B only requires bus for one transaction, so negates its request
while asserting FRAME#, indicating it is the bus master — the
transaction is completed in cycle 6.

Arbiter grants Device A the bus by asserting GNT#-a, and negating
GNT#-a.

[¥]

BR 6/00 20

Theoretical Maximum (Peak) Bandwidth

* Peak Bandwidth of PCI is:
bytes per clock * clk freq = MB/s
* 32bitbus, 33 Mhz: 4 * 33 Mhz= 132 MB/s
* 64 bitbus, 66 Mhz: 8 * 66 Mhz= 528 MB/s
* PCI cannot achieve peak bandwidth. Many factors
contribute to not reaching peak bandwidth
— turnaround cycles on a bus are “dead” cycles (no data transferred)
— handoff cycles from one bus master to another bus master
— address phase of transaction does not transfer data
* Clocks for a PCI transaction is initial target latency
(includes time for address phase) + data phases (assume 1
clk/data phase).

BR 6/00 21

Synchronous vs. Asynchronous

» Synchronous Transfer

— Clock signal included in bus. Transfer can occur on a
single edge (either rising or falling) or on both edges
(double-pumped)

— Clock encoded with data (i.e, Data strobe signaling via
IEEE Firewire)

* Asynchronous Transfer

— Handshaking lines controls data transfer

» Synchronous bus usually higher bandwidth than
asynchronous bus

BR 6/00 22

Synchronous Transfer

cek T L 1L

]
Write |
]

|
1 [
1 [
Signal WR ' ," /\% ‘.\ L

BN

New Data >< NewDat
N
Glitches during clock
Data transférred on period are ignored if
rising edge not near edge.

A problem with clocked busses is that the slowest device sets the
clock frequency! All devices must be able to communicate at the
bus speed.

BR 6/00 23

Asynchronous Transfer (four-phase)

A C
A: master request
master__| B: slave ack
B D C: master saw ack
slave |/ ‘L D. slave saw master
old Data >< New|Data

data captured by slave during this period
Different speed devices easily supported.
Noise on handshaking lines can be a problem

The above protocol is called “four-phase” handshaking. All

signals start a ‘0’ and end at ‘0’ after data transfer.
BR 6/00 24

Asynchronous Transfer (two-phase)

Master data captured by

slave here
Slave /

New Data YNew Data >< New Data

Two-phase transfer — data transfer occurs on each
transition of handshaking signals.

BR 6/00 25

Methods for Increasing Bus Transfer Rates
* Make Data bus wider

— Increases pin count, cost
— Increases noise — more signal transitions, more current
draw, more noise
* Increase clock speed

— Not all devices on bus may be able to talk at new clock
rate

* Clock data on both edges

— Good solution for bus standards that already have a
fixed clock rate — need a configuration line that
determines if this is a single or double edge clocked
device

BR 6/00 26

Methods for Increasing Bus Transfer
Rates (cont).

 Split Transactions

— A data transaction is composed of two parts: sending the address,
then sending/receiving the data

— Once an address is received, the I/O device may require some time
to locate the data

— A split transaction allows the address to be sent over the bus, then
transactions to other I/O devices can be done while the first device
is locating the data. The transaction is finished at a later time when
the I/O device has retrieved the data.

— Split transactions help eliminate waiting time

* Burst mode transfers — more efficient than single mode
transfers

* Advanced electrical signaling
— RAMBUS limited voltage swing signaling

BR 6/00 27

