Bus Cycles (Chap. 7)

- Data Transfer from x86 to/from Memory or I/O Device
- Occurs Via System (PC) Bus
 - 4 System Bus Clock Periods for 8086/8088/80286 (T1, T2, T3, T4)
 - 2 System Bus Clock Periods for 386+
 - (T1, T2)
- Pins on x86 Package Connected to Memory or I/O Interface Synchronous Bus
- - "Clocked" Bus
 - Less Than CPU Clock Speed for Pentium+ (except for 60, 66 and 75 MHz Pentiums)
- 75 MHz Pentium Not Too Popular Since 50 MHz Bus
 - and 1.5x Multiplier
 - Better Performance from 60, 66 MHz Pentiums!
 - Motherboard Circuit Generates Bus Clock Signal
 - CPU Contains a Clock Multiplier Circuit Internally

	System Cleak			
Processor	System Clock		CPU ACCess Time	
0000	Frequency (MHZ)	Penda (ns)	1 States	Time (ns)
0000	4.77	209	2.3	480
8086	10	100	2.3	230
80286	12.5	80	2.3	184
80386	33	33	1.5	49.5
80486	50	20	1.5	30
Pentium	66	15	1.5	22.5
Pentium Pro	66	15	1.5	22.5
Pentium MMX*	66	15	1.5	22.5
Pentium II*	100	10	1.5	20
Pentium III*	133	7.5	1.5	15
*CDULC ClI	is Generated by Inter	nal Multiplier Circu	t	

	(8080/8080/80280)
<u>T1</u>	STATE (Address Out State)
•	CPU Drives Valid Address on Address Bus
<u>T2</u>	STATE (Transaction Type)
•	READ:
	- IOR or MEMR go Active
•	WRITE:
	 IOW or MEMW and Data Bus go Active
Т3	STATE (Memory or I/O Respond)
•	READ:
	 CPU "waits" for Memory (or I/O) to Drive Data Bus
•	WRITE:
	 CPU Continues to Drive Data Bus
<u>T4</u>	STATE (Data Latch State)
•	READ:
	 CPU Latches Data Bus Signals into Register
•	WRITE:
	 CPU Drives Data Until End of T4 Allowing Memory (or I/O) to Latch Data Bus Signals in*

Access Time

- MEMORY ACCESS TIME
 fAccess Memory

 • Time that Elapses from Receipt of Valid Address Until Valid Data is Present on the Data Bus
 Present on the Data Bus
- . This is a READ Access Time

CPU ACCESS TIME t_{Access Proce}

- Kocse Procesor
 Wacses Procesor
 Time from Driving Valid Address Out until T4 When Data Bus Signals Latched
 This is Specified by CPU Manufacturer
 Intel Specified This as 2.3 T States for 8088/8086/80186/80286 •
- .
- . Intel Specified This as 1.5 T States for 386+

t_{Access Processor} > t_{Access Memory}

EXAMPLE: IBM XT Using 8088 with 4.77 MHz Clock

- $t_{Access Processor} = 2.3T = (2.3)(1/4,770,000) = 481ns$.
- State of the Art Memory Access Times were in the 200-300 ns Range

Slow Memory

- "Slow Memory" is Memory with Access Time Close to that of Processor •
- Memory can't Supply Data Fast Enough to Meet the 2.3T (or 1.5T) Specification 3 Courses of Action in this Case:

1) Decrease System Clock Frequency

- "<u>Tur</u>bo"<u>Switc</u>h
 - Not Popular Since Everyone Wants "Turbo" On Always _

2) Buy Faster Memory

- May Not Yet Exist May be Too Expensive
- (Priced a 128MB PC133 DIMM Lately???)
- Memory Outputs a "Wait" Signal
 x86 has a READY Input Line on Control Bus
 - _
 - _
 - Xee files a READ I impactine on ounce book READY input 'Checked' During T3 If READY is Inactive (LOW), Additional T3 States are Added These Additional T3 States are Called "Wait States"

386+ Bus Cycles

- New CPU Output W/R Replaces MEMR, IOR, MEMW, IOW
- New CPU Input READY Replaces READY
- 2 State Bus Cycle T1 and T2 Only
- W/R Asserted in T1
 - (as compared to MEMR, MEMW, IOR, IOW in T2)
- Data Latched in T2 if READY is Low
- Wait State Occurs if READY is High in T2
- CPU Specified as 1.5 T

Processor	System Clock		CPU Access Time	
	Frequency (MHz)	Period (ns)	T States	Time (ns)
8088	4.77	209	2.3	480
8086	10	100	2.3	230
80286	12.5	80	2.3	184
80386	33	33	1.5	49.5
80486	50	20	1.5	30
Pentium	66	15	1.5	22.5
Pentium Pro	66	15	1.5	22.5
Pentium MMX*	66	15	1.5	22.5
Pentium II*	100	10	1.5	20
Pentium III*	133	7.5	1.5	15

Need for SRAM Cache

- Table Indicates CPU Access Time as Bus Clock Increases
- In 386+ the CPU Access Times are Less Than 50 ns
- Modern DRAM Access Times are 60-80ns
- To Avoid "Wait" States in Every Bus Cycle use SRAM Cache
 - 6-15ns Access Time
 - Can Achieve 95% Hit Rates (after cold start)

Burst Cycles - 486+

- 2T Cycles Read/Write 1 Quantity Data
 - (Byte, Word, DoubleWord, QuadWord)
 - (16-86/88/186/286, 32-386/486 and 64-Pentium+ bit Data Buses)
- To Allow Fast Cache Fills, Added "Burst Mode"
- Cache Line is Several QuadWords
- "Burst Cycle"
 - 2T for First Quantity
 - 1T for Subsequent Quantities

	486 Burst Cycles Characteristics					
•	No Write Bursts Supported					
•	Maximum Read Burst is 16 Bytes (1 Cache Line)					
•	"Aligned" Data Only					
	 (begin at address xxxx00₂ end at address xxxx11₂) 					
•	Possible Sequences:					
	xxxx <u>0</u> h, xxxx1h, xxxx2h, xxxx3h T1, T2					
	xxxx <u>4</u> h, xxxx5h, xxxx6h, xxxx7h TB1					
	xxxx <u>8</u> h, xxxx9h, xxxxah, xxxxbh TB2					
	xxxx <u>c</u> h, xxxxdh, xxxxeh, xxxxfh TB3					
•	Requires 5T to Read 16 Bytes (Instead of 8!)					
•	Uses BRDY# and BLAST# - New Control Bus Signals					
•	Four Aligned Access Possibilities					
	0-4-8-C 4-8-C-0 8-C-0-4 C-0-4-8					

Pentium Burst Cycles Characteristics

- Supports Read and Write Bursts
- 32 Byte Maximum Burst (1 Cache Line=32 Bytes)
- "Aligned" Data Only
 - (begin at address xxxx000₂ end at address xxxx111₂)
- Four Aligned Access Possibilities

0-8-10-18 8-10-18-0 10-18-0-8 18-0-8-10

Subsequent Burst Cycles

• Previously We Saw 2T+T+T+T (=T1+T2+TB1+TB2+TB3)

Required For 16 Byte Transfer (in 486)

- This is a 2-1-1-1 Burst
- Subsequent Bursts

2-1-1-1; 2-1-1-1; 2-1-1-1; ...;2-1-1-1

Pipelined Burst Cycles

Pentium Allows Next "Burst Address" to be Asserted

in Last Burst Cycle

Subsequent Bursts

2-1-1-1*; 1**-1-1-1*; 1**-1-1-1*; ...;1**-1-1-1

*Address for Next Asserted Here Instead of Next T1 **Can Think of This as a T2 with the T1 Skipped

Memory Access Width

• May Not Need "Full Data Bus Width" in an Access

e.g. mov al, [0000]

- Data Bus Widths Vary
 8088-8bits; 8086/186/286-16bits; 80386/486-32bits; Pentium+-64bits
- Solution is to Use "Byte Enable" Signals
- Output Signals (in Control Bus) of x86
 8088/86/186/286 Uses BHE and A0
 80386/486 Uses BE3-BE0
 - Pentium+ Uses BE7-BE0

- IF Requested Bytes Within 1 Doubleword (386,486) or 1 Quadword (Pentium+) THEN Access is <u>ALIGNED</u> and Requires 1 Bus Cycle
- IF Requested Bytes Cross Address Boundary THEN
 Access is *MISALIGNED* and Requires 2 Bus Cycles

Bandwidth Example

8088 System @ 4.77 MHz External Clock

Data Bus = 1 Byte 4T Transfer BW=[(1 byte)(4.77 MHz)]/(4)=1.19 MB/s

Pentium II @ 100 MHz External Clock

Data Bus = 8 Bytes 2T Transfer BW=[(8 bytes)(100 MHz)]/(2)=400.0 MB/s

Increase in BW is 33,513% !!!!!!!!!