
1

BR 6/00 1

Instruction Set extensions to X86

• Some extensions to x86 instruction set intended to
accelerate 3D graphics

• AMD 3D-Now! Instructions simply accelerate
floating point arithmetic.
– Accelerate object transformations
– Allow multiple floating point operations to be done in

one clock cycle.

• A similar extension is found on the Pentium III –
just does not have the fancy name.

BR 6/00 2

Floating Point SIMD instructions

• SIMD stands for Single Instruction, Multiple Data
• Same instruction applied to multiple operands

– Do an add on four pairs of operands
y0= a0 +b0, y1 = a1+b1, y2=a2+b2, y3 = a3+b3

• Pentium III added some 128 bit registers used to hold
‘packed’ single precision floating point numbers
– A single precision floating point number is 32 bits

BR 6/00 3

xmm Registers
New 128 bit registers are called XMM registers (XMM0 – XMM7)
Holds four 32-bit single precision floating point numbers

An instruction like ADDPS xmm0, xmm1 will add the two
registers together, computing the sums of the four numbers.

Easy to see speed advantage over previous instructions

4.0 (32 bits)

+

4.0 (32 bits) 3.5 (32 bits) -2.0 (32 bits)

2.3 (32 bits)1.7 (32 bits)2.0 (32 bits)-1.5 (32 bits)

0.3 (32 bits)5.2 (32 bits)6.0 (32 bits)2.5 (32 bits)

2

BR 6/00 4

SIMD Extensions

More than 70 instructions. Arithmetic Operations supported:
Addition, Subtraction, Mult, Division, Square Root, Maximum,
Minimum. Can operate on Floating point or Integer data.

BR 6/00 5

Flags

• Individual flags are not kept for each packed
operation.

• Can only tell if an error (exception) occurred in
one or more of the packed operations

• Some possible exceptions (not all listed)
– Underflow (number too small)
– Overflow (number too large)
– Divide by Zero

BR 6/00 6

Pentium 3 vs. Pentium 4
• The SIMD extensions on the Pentium 3 are called

the SSE instructions and the 128 bit registers only
support viewing the data as 4 single precision FP
numbers.

• On the Pentium 4, the 128 bit registers can be
viewed as these data types
– 4 single precision FP values (SSE)
– 2 double precision FP values (SSE2)
– 16 byte values (SSE2)
– 8 word values (SSE2)
– 4 double word values (SSE2)
– 1 128-bit integer value (SSE2)

3

BR 6/00 7

MMX Instructions
Added eight 64 bit registers. The 64 bit register can be viewed as
containing 8 packed bytes, 4 packed words, 2 dwords, or 1 quad.

BR 6/00 8

Saturating Arithmetic
The MMX instructions perform SIMD operations between
MMX registers on packed bytes, words, or dwords.

The arithmetic operations can made to operate in Saturation
mode.

What saturation mode does is clip numbers to Maximum
positive or maximum negative values during arithmetic.

In normal mode: FFh + 01h = 00h (unsigned overflow)
In saturated, unsigned mode: FFh + 01 = FFh (saturated to
maximum value, closer to actual arithmetic value)

In normal mode: 7fh + 01h = 80h (signed overflow)

In saturated, signed mode: 7fh + 01 = 7fh (saturated to max
value)

BR 6/00 9

Why Saturating Arithmetic?
• In case of integer overflow (either signed or

unsigned), many applications are satisfied with
just getting an answer that is close to the right
answer or saturated to maxium result

• Many DSP (Digital Signal Processing) algorithms
depend on this feature
– Many DSP algorithms for audio data (8 to 16 bit data)

and Video data (8-bit R,G,B values) are integer based,
and need saturating arithmetic.

• This is easy to implement in hardware, but slow to
emulate in software. A nice feature to have.

4

BR 6/00 10

Floating Point Representations
• The goal of floating point representation is represent a

large range of numbers
• Floating point in decimal representation looks like:

+3.0 x 10 3 , 4.5647 x 10 -20 , etc
• In binary, sample numbers look like:

-1.0011 x 2 4 , 1.10110 x 2 –3 , etc
• Our binary floating point numbers will always be of the

general form:
(sign) 1.mmmmmm x 2 exponent

• The sign is positive or negative, the bits to the right of
decimal point is the mantissa or significand, exponent can
be either positive or negative. The numeral to the left of
the decimal point is ALWAYS 1 (normalized notation).

BR 6/00 11

Floating Point Encoding
• The number of bits allocated for exponent will

determine the maximum, minimum floating point
numbers (range)
1.0 x 2 –max (small number) to
1.0 x 2 +max (large number)

• The number of bits allocated for the significand
will determine the precision of the floating point
number

• The sign bit only needs one bit (negative:1,
positive: 0)

BR 6/00 12

Single Precision, IEEE 754

Single precision floating point numbers using the IEEE 754
standard require 32 bits:

S exponent significand
8 bits 23 bits1 bit

31 30 23 22 0

Exponent encoding is bias 127. To get the encoding, take the
exponent and add 127 to it.

If exponent is –1, then exponent field = -1 + 127 = 126 = 7Eh
If exponent is 10, then exponent field = 10 + 127 = 137 = 89h
Smallest allowed exponent is –126, largest allowed exponent is
+127. This leaves the encodings 00H, FFH unused for normal
numbers.

5

BR 6/00 13

Convert Floating Point Binary Format to Decimal
1 10000001 010000........0

S exponent significand

What is this number?

Sign bit = 1, so negative.

Exponent field = 81h = 129.
Actual exponent = Exponent field – 127 = 129 – 127 = 2.

Number is:
-1 . (01000...000) x 2 2

-1 . (0 x 2-1 + 1 x 2-2 + 0 x 2-3 .. +0) x 4
-1 . (0 + 0.25 + 0 +..0) x 4
-1.25 x 4 = -5.0.

BR 6/00 14

Convert Decimal FP to binary encoding
What is the number -28.75 in Single Precision Floating Point?

1. Ignore the sign, convert integer and fractional part to binary
representation first:
a. 28 = 1Ch = 0001 1100
b. .75 = .5 + .25 = 2-1 + 2-2 = .11

-28.75 in binary is - 00011100.11 (ignore leading zeros)

2. Now NORMALIZE the number to the format 1.mmmm x 2exp

Normalize by shifting. Each shift right add one to exponent, each
shift left subtract one from exponent:

- 11100.11 x 20 = - 1110.011 x 21

= - 111.0011 x 22

= - 1.110011 x 24

BR 6/00 15

Convert Decimal FP to binary encoding (cont)

Normalized number is: - 1.110011 x 24

Sign bit = 1

Significand field = 110011000...000

Exponent field = 4 + 127 = 131 = 83h = 1000 0011

Complete 32-bit number is:

1 10000011 110011000....000

S exponent significand

6

BR 6/00 16

Algorithm for converting fractional decimal to Binary
An algorithm for converting any fractional decimal number to its

binary representation is successive multiplication by two
(results in shifting left). Determines bits from MSB to LSB.

a. Multiply fraction by 2.

b. If number >= 1.0, then current bit = 1, else current bit = 0.

c. Take fractional part of number and go to ‘a’. Continue until
fractional number is 0 or desired precision is reached.

Example: Convert .5625 to binary
.5625 x 2 = 1.125 (>= 1.0, so MSB bit = ‘1’).

.125 x 2 = .25 (< 1.0 so bit = ‘0’)

.25 x 2 = .5 (< 1.0 so bit = ‘0’)

.5 x 2 = 1.0 (>= 1.0 bit = 1), finished.
.5625 = .1001b

BR 6/00 17

Overflow/Underflow, Double Precision

• Overflow in floating point means producing a
number that is too big or too small (underflow)
– Depends on Exponent size
– Min/Max exponents are 2 –126 to 2 +127

is 10 -38 to 10 +38 .
• To increase the range, need to increase number of

bits in exponent field.
• Double precision numbers are 64 bits - 1 bit sign

bit, 11 bits exponent, 52 bits for significand
• Extra bits in significand gives more precision, not

extended range.

BR 6/00 18

Special Numbers
Min/Max exponents are 2 –126 to 2 +127 .
This corresponds to exponent field values of of 1 to 254.

The exponent field values 0 and 255 are reserved for special
numbers . Special Numbers are zero, +/- infinity, and NaN (not
a number)

Zero is represented by ALL FIELDS = 0.

+/- Infinity is Exponent field = 255 = FFh, significand = 0. +/-
Infinity is produced by anything divided by 0.

NaN (Not A Number) is Exponent field = 255 = FFh, significand
= nonzero. NaN is produced by invalid operations like zero
divided by zero, or infinity – infinity.

7

BR 6/00 19

Comments on IEEE Format
• Sign bit is placed is in MSB for a reason – a quick

test can be used to sort floating point numbers by
sign, just test MSB

• If sign bits are the same, then extracting and
comparing the exponent fields can be used to sort
Floating point numbers. A larger exponent field
means a larger number since the ‘bias’ encoding is
used.

• All microprocessors that support Floating point
use the IEEE 754 standard. Only a few
supercomputers still use different formats.

BR 6/00 20

x86 Floating Point Instructions
x86 Floating Point instructions handled by a separate execution

engine – used to be a separate chip (80387) but moved onto the
same die as the integer unit starting with the 80486.

st0(st)
st1(st-1)

st2
st3
st4
st5
st6
st7

Floating Point Unit (FPU) has eight 80-bit
registers (ST0-ST7) arranged as a stack.

80-bits used for extra precision over IEEE
format.

Top of the stack normally referred to as
ST, next register as ST-1

BR 6/00 21

Classical Stack Instructions
A classical stack instruction has 0 operands specified in the
instruction.

The two operands are assumed to be ST and ST(1). The result
is temporarily stored in ST(1), then ST is popped off the stack
leaving the result on top of the stack.

FADD ; ST(1) = ST(1) + ST; pop ST(1) into ST

100.0
20.0

ST
ST(1)

Before FADD

120.0ST
ST(1)

After FADD

Note: FSUB does ST(1) = ST(1)-ST; pop ST(1) into ST

8

BR 6/00 22

Real Memory and Integer Memory
Real Memory and Integer Memory instructions have an implied
first operand that is ST and a memory operand for the second
operand. The result is placed into ST.

.data
floatval dd 10.0 ;floating point value
int16val dw 10 ; 16 bit integer
int32val dd 10 ; 32 bit integer

; no decimal point!
.code

….
fadd floatval ;st=st+10.0
fiadd int16val ;st = st+10
fiadd int32val ;st = st+10

Integer values converted to floating point format before operation
is performed.

BR 6/00 23

Register Operands

Register instructions use the FPU registers as ordinary operands.

fadd st,st(1) ; ST = ST + ST(1)
fsub st,st(1) ; ST = ST – ST(1)

Register pop is same as register, except that ST is popped off stack
afterwards.
faddp st(1),st; ST(1) = ST(1)+ST, pop ST

100.0
20.0

ST
ST(1)

Before FADDP

120.0ST
ST(1)

After FADDP

100.0
120.0

ST
ST(1)

Intermediate

BR 6/00 24

fld, fild
The fld instruction is used to load a memory floating point operand
into ST0. The fild instruction loads a memory integer operand into
ST0.

.data
op1 dd 6.0 ;floating point value
op2 dw 2 ; integer value

.code
….

fld op1
fild op2

??
??

ST
ST(1)

Before 1st fld

6.0
??

ST
ST(1)

after ‘fld op1’

2.0
6.0

ST
ST(1)

after ‘fld op2’

9

BR 6/00 25

fst, fstp
The fst (Float store) is used to save ST0 to memory.
The fstp (Float store and pop) is used to save ST0 to memory, then
pop the stack.

.data
result dd ?? ;floating point value

.code
….

fst result ;; save ST0 to result
fstp result ;; save ST0 to result

;; and pop

100.0
20.0

ST
ST(1)

Before fstp

??result

20.0
??

ST
ST(1)

After fstp

100.0result

BR 6/00 26

A Sample Program
.model small
.586
.stack 100h
.data

op1 dd 6.0
op2 dd 2.0
op3 dd 5.0
result dd ?

.code
main proc

mov ax,@data
mov ds,ax
finit
fld op1
fld op2
fmul
fld op3

Init FPU

6.0ST

2.0ST0
6.0ST(1)

12.0ST0
??ST(1)

5.0ST0
12.0ST(1)

BR 6/00 27

A Sample Program (cont)
main proc

mov ax,@data
mov ds,ax
finit
fld op1
fld op2
fmul
fld op3
fsub
fwait
fstp result
mov ax,4c00h
int 21h

main endp
end main

5.0ST0
12.0ST(1)

7.0ST0
??ST(1)

Wait for exceptions to finish

7.0result

??ST0
??ST(1)

ST(1) = ST(1) – ST; pop

10

BR 6/00 28

Other Instructions

fmul ; st(1) = st(1)* st(0), pop
fdiv ; st(1) = st(1)/ st(0), pop
fdivr ; st(1) = st(0)/ st(1), pop
fsqrt ; st(0) = square root(st(0))
fsin ; st(0) = sine(st(0));
fcos ; st(0) = fcos(st(0));

