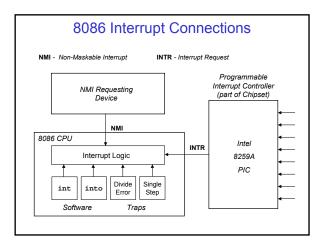
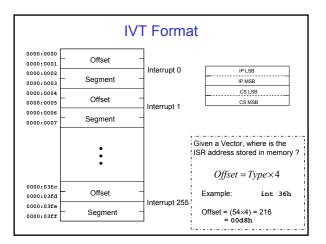

Computer Interrupt

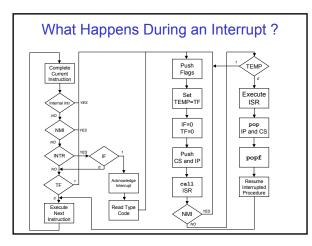
a *signal* indicating that an event needing immediate attention has occurred


- 2 Types of Interrupts:
 - External generated outside CPU by other hardware
 - Internal generated within CPU as a result of an instruction or operation
 - x86 has internal interrupts: int, into, Divide Error and Single Step
 - Trap generally means any processor generated interrupt
 - in x86, Trap usually means the Single Step interrupt

x86 Interrupts:

- 1) Hardware Interrupt External Uses INTR and NMI
- 2) Software Interrupt Internal from int or into
- 3) Processor Interrupt Traps and 10 Software Interrupts (12 total)





Interrupt Vector Table - IVT

- x86 Recognizes 256 Different Interrupts
 - Specified by Type Number or Vector
- 1 Byte of Data Must Accompany Each Interrupt Specifies Type
- Vector is Pointer into Interrupt Vector Table, IVT
 Stored in Memory from 0000:0000 to 0000:03ffh
- IVT Contains 256 Far Pointer Values
 Far Pointer is CS:IP Values
- Each Far Pointer is Address of Interrupt Service Routine, ISR
 Also Referred to as Interrupt Handler
- Table 4-6 of Uffenbeck (3rd edition, pg 197) has the interrupt vector numbers for the 80x86 family

Similarity to Subroutine Procedure

 $call \Leftrightarrow int$

 $ret \Leftrightarrow iret$

- call pushes CS, IP and loads CS:IP with address of subroutine
- int does what call does and more
- ret pops IP, CS
- iret pops FLAGS, IP, and CS

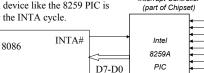
This is why ALL programs MUST have a stack segment, so that interrupts can be handled

Interrupt Acknowledge Cycles

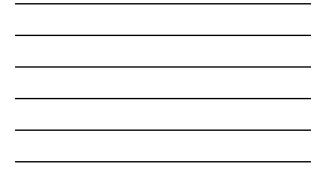
The interrupt vector number for NMI is 2, so the location in the IVT for the NMI ISR address is 4*2 = 0x00008h.

Examination of Table 4-6 in Uffenbeck (3rd edition, pg 196) does not give an interrupt vector number for the INTR interrupt! What is the vector number for INTR?

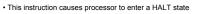
Upon receipt of an INTR interrrupt, the 80x86 executes a two special bus cycles called an Interrupt Acknowledge Cycle.


The purpose of an Interrupt Acknowledge Cycle is to fetch the interrupt vector number from the interrupting device via the D7-D0 lines.

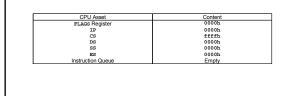
Interrupt Acknowledge Cycles (cont)


The first INTA cycle (2 clks) asserts the INTA# line and alerts the interrupting device that it must be ready to provide the vector number.

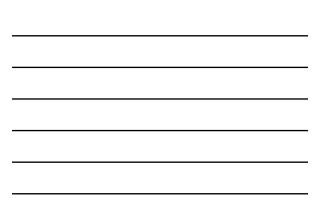
The 2nd INTA cycle (2 clks) asserts the INTA# line and the interrupting device must provide the vector number via the lower 8 data lines (D7-D0). The 80x86 inputs the vector number, and then provides with normal interrupt processing. Programmable


Some external device like the 8259 PIC is used to satisfy the INTA cycle.

Interrupt Controller


halt Instruction

 $\mbox{\ }$ HALT state is one where no further instructions are fetched nor executed


until one of the following events occurs:

System is Reset - Rising Edge on RESET pin
 External Interrupt Occurs

Туре	Function	Comment
0	Divide Error	Processor - zero or overflow
1	Single Step (DEBUG)	Processor - TF=1
2 3	Nonmaskable Interrupt Pin	Processor - NMI Signal
3	Breakpoint	Processor - Similar to Sing Step
4	Arithmetic Overflow	Processor - into
5	Print Screen Key	BIOS - Key Depressed
6	Invalid Opcode	Processor - Invalid Opcode
7	Coprocessor Not Present	Processor - no FPU
8	Time Signal	BIOS - From RT Chip (AT - IRQ0
9	Keyboard Service	BIOS - Gen Service (AT - IRQ1)
A - F	Originally Bus Ops (IBM PC)	BIOS - (AT - IRQ2-7)
10	Video Service Request	BIOS - Accesses Video Driver
11	Equipment Check	BIOS - Diagnostic
12	Memory Size	BIOS - DOS Memory
13	Disk Service Request	BIOS - Accesses Disk Driver
14	Serial Port Service Request	BIOS - Accesses Serial Port Drv
15	Miscellaneous	BIOS - Cassette, etc.
16	Keyboard Service Request	BIOS - Accesses KB Driver

Туре	Function	Comment		
17	Parallel Port LPT Service	BIOS - Printer Driver		
18	ROM BASIC	BIOS - BASIC Interpreter in ROM		
19	Reboot	BIOS - Bootstrap		
1A	Clock Service	BIOS - Time of Day from BIOS		
1B	Control-Break Handler	BIOS - Keyboard Break		
1C	User Timer Service	BIOS - Timer Tick		
1D	Pointer to Video Parm Table	BIOS - Video Initialization		
1E	Pointer to Disk Parm Table	BIOS - Disk Subsystem Init.		
1F	Pointer to Graphics Fonts	BIOS - CGA Graphics Fonts		
20	Program Terminate	DOS - Clear Memory, etc.		
21	Function Call	DOS - Transfer Control		
22	Terminate Address	DOS - program Terminate handle		
23	Control-C Handler	DOS - For OS Use		
24	Fatal Error Handler	DOS - Critical Error		
25	Absolute Disk Read	DOS - Disk Read		
26	Absolute Disk Write	DOS - Disk Write		
27	Terminate	DOS - TSR Usage		
28	Idle Signal	DOS - Idle		
2F	Print Spool	DOS - Cassette, etc.		
70-77	Hardware Interrupts in AT Bios	DOS - (AT - IRQs 8-15)		

Name	Interrupt Vector	Priority	Description			
NMI	02	1	Memory Parity Error			
IRQ0	08	2	Timer (Intel 8253 Chip 55 ms intervals)			
IRQ1	09	3	Keyboard			
IRQ2	0A	4	8259 PIC Slave or EGA/VGA Vert. Retrace			
IRQ3	0B	13	Serial Port (COM2 or COM4)			
IRQ4	0C	14	Serial Port (COM1 or COM3)			
IRQ5	0D	15	Fixed Disk or LPT2 Request			
IRQ6	0E	16	Floppy Disk Driver			
IRQ7	0F	17	LPT1 Request			
IRQ8	70	5	CMOS Real-Time Clock (RT Chip)			
IRQ9	71	6	Re-directed to IRQ2			
IRQ10	72	7	RESERVED			
IRQ11	73	8	RESERVED			
IRQ12	74	9	Mouse or other			
IRQ13	75	10	Math Coprocessor (NPX)			
IRQ14	76	11	Hard Disk			
IRQ15	77	12	RESERVED			

