
1

BR 6/00 1

Polled IO versus Interrupt Driven IO

• Polled IO – processor continually checks IO 
device to see if it is ready for data transfer
– Inefficient, processor wastes time checking for ready 

condition

• Interrupt Driven IO – IO device interrupts 
processor when it is ready for data transfer
– Processor can be doing other tasks while waiting for 

last data transfer to complete – very efficient.

– All IO in modern computers is interrupt driven.

BR 6/00 2

Interrupt Driven IO

• INTR input on x86 generates a hardware interrupt

• INTA# output used to acknowledge the interrupt –
valid for 2 bus cycles

• On 2nd cycle, the x86 inputs the interrupt number 
from the D0-D7 of the data bus 
– Interrupt number * 4 is memory location of interrupt 

service routine vector

• External device must provide this number



2

BR 6/00 3

8259A PIC

• 8259A Programmable interrupt controller external 
device used to provide 8 interrupt sources

• Multiple 8259A chips can be cascaded to provide 
up to 64 interrupt sources

• Initial PCs had two 8259A chips to provide IRQ0-
IRQ15

BR 6/00 4

Interrupt Priorities

• A priority scheme determines what happens in the case of 
simultaneous interrupts

• A fixed priority scheme assigns priorities in a fixed order 
(ie. IRQ0 has highest priority, IRQ7 has lowest priority).
– Can result in lowest priority devices not being serviced enough

• A rotating priority scheme rotates the highest priority 
among all sources by shifting the priorities
– Highest priority is IRQ0, then after an interrupt, highest priority is 

changed to IRQ1, etc...

– Results in more fair servicing of interrupts.



3

BR 6/00 5

Interrupt Driven Input

• A circular buffer is most often used to handle 
interrupt driven INPUT.

• A circular buffer requires the following pointers
– base address of memory buffer
– head index (head pointer)
– tail index (tail pointer)
– size of buffer

• A circular buffer is simply another name for a 
FIFO (First-In-First-Out) buffer.
– The name circular buffer helps to visualize the 

wraparound conditon

BR 6/00 6

Circular buffer, 8 locations long

???

????

????

????

????

????

????

????

head → ← tail

When buffer is empty, head = tail index



4

BR 6/00 7

Circular buffer, write operation

???

dataA

????

????

????

????

????

????

head →
← tail

Interrupt service routine places items in memory buffer by 
incrementing head index, then storing value

write a value

???

dataA

dataB

????

????

????

????

????

← tail

write a 2nd value

head →

BR 6/00 8

Circular buffer, read operation
Input function occassionally checks to see if head not equal to 
tail, if true, then read value by incrementing tail, then reading 
memory.

???

dataA

dataB

????

????

????

????

????

← tail

read dataA value

head →

???

dataA

dataB

????

????

????

????

????

← tail

read dataB value

head →



5

BR 6/00 9

Circular buffer, wraparound
when head pointer gets to end of buffer, set back to top of 
buffer (wraparound)

???

dataA

dataB

dataC

dataD

dataE

dataF

dataG

← tail

head at end of buffer

head →

dataH

dataA

dataB

dataC

dataD

dataE

dataF

dataG

← tail

head at end of buffer

head →

BR 6/00 10

Circular buffer, buffer FULL
buffer FULL occurs if interrupt service routines increments 
head pointer to place new data, and head = tail!!!!

dataH

dataI

dataB

dataC

dataD

dataE

dataF

dataG

← tail

near overflow

head →
dataH

dataI

dataJ

dataC

dataD

dataE

dataF

dataG

← tail

buffer FULL

head →

Function 
taking data out 
of buffer 
thinks buffer is 
empty!!!!



6

BR 6/00 11

How to pick size of circular buffer?

• Must be big enough so that buffer full condition 
never occurs

• Routine that is taking data out of buffer must 
check it often enough to ensure that buffer full 
condition does not occur. 

• Buffer must be big enough so that bursts of data 
into buffer does not cause buffer full condition.

BR 6/00 12

check if interrupt from 16550D is a 
receive data interrupt

Receive data intrpt?
no, handle other interrupts

yes

check if 16550D FIFO RBR still has data

data in RBR?
no, exit 

yes

receive data 
error?

yes, exit 

increment head pointer
store data at buffer_start+head

save new head pointer

save registers

restore registers

return from 
interrupt

Interrupt Service 
routine 
flowchart for 
receive data, 
16550D



7

BR 6/00 13

check if tail equal to head pointer

Tail = Head?
yes, buffer empty

increment tail pointer
read data at buffer_start+tail

save new tail pointer

return from subroutine

Subroutine 
flowchart for 
reading data out 
of the circular 
buffer.


