

I/O Port Addressing Modes

- Two Addressing Modes
 - 1) Immediate Port Address
 - Can only be 1 byte
 - Can only Address Ports 00h through ffh
 - 2) Port Address Present in DX
 - Can Address all Ports 0000h through ffffh
- Can only Use Dx for Port Addresses
- Can only Use AL, AX, EAX for Port Data

I/O Data Transfer								
in a	al,	40h	;al gets 1 byte from port 40h					
in a	ax,	255	;ax gets 2 bytes from port ffh					
in a	al,	dx	;ax gets 1 byte from port address in dx					
in e	eax,	dx	;eax gets 4 bytes from port addr. in dx					
out 8	Oh,	al	;send contents of al to port 80h					
out d	lx,	eax	;send contents of eax to port addr. in dx					
<u> 386+</u>								
insb	72		;receive byte string from port 72					
			;store in location at es:di					
insw	dx		;receive word strng from port addr. in dx					
insd	dx		;receive doub. word string					
outsb	ffh		;send byte string to port 255					
			;source string located in memory at ds:si					
outsw	/ dx		;send word string to port addr. in dx					
outsd	l dx		;send doub. word string to port					

Memory Mapped I/O

- Possible to Design Address Decoder to "Divert" Read or Write to a Device Instead of Memory
- Replace Memory Chip with Set of Latches (CPU Write) and Set of Tri-State Buffers (CPU Read)
- In Hardware, Appears to be I/O Port Interface
- In Software, Appears to be Memory Location - Use mov Instead of in, out
- Advantage is Large Variations in Addressing Modes
- Disadvantage is Particular Memory Address can NEVER be Used for Data Storage

Packaged I/O Interface Circuits

- Several Developed by Intel to Ease Design Burden
 Provide a Complete I/O Interface on a Single Chip
- Examples of Common I/O Interface Chips:
 - 8255A Programmable Peripheral Interface (PPI)
 - 8259 Programmable Interrupt Controller (PIC)
 - 8253/4 Programmable Interval Timer (PIT)
 - 8237 Programmable DMA Controller
- IBM PC/XT had these Chips on System Board
- Modern PCs have Functionality Included in System
 Chipset

8255A PPI – Assets and Capabilities

- 24 I/O Lines in 3 8-bit Port Groups A, B, C
- A, B can be 8-bit Input or Output Ports
- C can Serve as 2 4-bit Input or Output Ports
- 3 Modes of Operation:
 - Mode 0: A, B, C Simple Input or Output Level Sensitive Ports
 - Mode 1: A, B Input or Output Ports with Strobe Control in C
 - Mode 2: A is Bidirectional with Control/Handshake in B and C
- A, B can only Change 1 Byte at a Time
- C has Individual Bit Set/Reset Capability
- Advantage is Non-Dedicated Circuit can Change Port Configuration with Software and No "Glue Logic"

PPI Programming Example								
Jagumo Jd	drogg Dog	oder Designed for DDT Page Address of 0400b						
Assume Address Decoder Designed for PPI Base Address of 0400h								
;PPI Connected to D_7 - D_0 on 486 data bus								
mov	dh,	04h						
mov	dl,	Och						
mov	al,	82h						
out	dx,	al						
What is the above Code Doing????								

Control Word Example								
;Assume Address Decoder Designed for PPI Base Address of 0400h								
;PPI Connected to D_7-D_0 on 486 data bus								
mov	dh,	04h	;Let dh point to base address					
mov	dl,	0ch	;Select the control register					
mov	al,	82h	;Place 82h Control Word into al					
out	dx,	al	;Write al contents to PPI					
D ₇ =1	Regis	Register Receives Control Word						
(not bit set/reset)								
D ₆ D ₅ =00	A and $C_7 - C_4$ are Mode 0 (Group A)							
D ₄ =0	A is Level Sensitive Output							
D ₃ =0	C_7-C_4 is Level Sensitive Output							
D ₂ =0	B and C_3-C_0 are Mode 0 (Group B)							
D ₁ =1	B is	B is Level Sensitive Input						
D ₀ =0	C_3-C_0 are Level Sensitive Output							

