
1

BR 6/00 1

Parameter Passing
• Most subroutines require parameters

• Can sometimes pass parameters via registers

Assume subroutine ‘line’ will compute the value:
y = m*x + b

where m,x,b are signed byte values, and ‘y’ is a 16 bit value.

Could pass the values in registers:
al = m, dl = x, cl = b

BR 6/00 2

Procedure ‘line’

; computes y = m*x + b
; al=m, dl = x, cl = b
; result returns in ax
proc line

imul dl ;ax = al*dl
mov dx,ax ; save ax
mov al,cl
cbw ; ax=b sign extended
add ax,dx
ret ;return ax=y

BR 6/00 3

Calling procedure line
.data

mval db ?
xval db ?
bval db ?
sum dw ?

.code
mov ax, @data
mov dx, ax
mov al, byte ptr [mval]
mov dl, byte ptr [xval]
mov cl, byte ptr [bval]
call line
mov [sum],ax

2

BR 6/00 4

Passing Parameters on Stack

Often need to pass parameters on the stack because registers
cannot hold all of the parameters. Pass m,x,b on stack, return Y
in ax. .code

mov ax, @data
mov ds, ax
xor ah,ah
mov al, byte ptr [mval]
push ax
mov al, byte ptr [xval]
push ax
mov al, byte ptr [bval]
push ax
call line
mov [sum],ax

???

mval

xval

bval

retadd

????

????

????

????

← SP
on entry to
subr ‘line’

high memory

low memory

BR 6/00 5

Procedure ‘line’ with parameters on stack

; computes y = m*x + b
; al=m, dl = x, cl = b
; result returns in ax
line proc

mov bp,sp
mov ax,[bp+6] ; get oper_m
mov cx,[bp+4] ; get oper_x
imul cl ; ax = al * cl = a * x
mov dx,ax ; save ax in dx
mov ax,[bp+2] ; get oper_b
cbw ; sign extend al to 16 bits
add ax,dx ; ax = a*x + b

ret 6 ; return and inc SP by 6

line endp

BR 6/00 6

Some notes on ‘line’ example
• Cannot use register ‘sp’ as an address register

– mov ax, [sp+2] is illegal

– must use ‘bp’ (base pointer), transfer sp to bp first

– default segment for ‘bp’ is stack segment

• It is usually the subroutine’s job to clean up the stack of
passed parameters
– the code ‘ret 6’ will pop off the return address, then increment the

stack pointer by 6 to clean up stack.

• The calling code could also clean up the stack if desired:
call line
add sp, 6 ; clean up stack

In this case, the subroutine would just use the ‘ret’
instruction with no arguments.

3

BR 6/00 7

Saving the BP value

; computes y = m*x + b
; al=m, dl = x, cl = b
; result returns in ax
line proc

push bp ;save BP value
mov bp,sp
mov ax,[bp+8] ; get oper_m
mov cx,[bp+6] ; get oper_x
imul cl ; ax = al * cl = a * x
mov dx,ax ; save ax in dx
mov ax,[bp+4] ; get oper_b
cbw ; sign extend al to 16 bits
add ax,dx ; ax = a*x + b
pop bp ; restore BP

ret 6 ; return and inc SP by 6

line endp

Note that BP offsets
increased by 2

BR 6/00 8

Stack Picture with BP

???

mval

xval

bval

retadd

old BP

????

????

????

← new BP = SP
after push of BP, mov bp,sp

bp +4

bp + 6

bp + 8

BR 6/00 9

Local Memory Storage on Stack

What if the subroutine needed some temporary memory locations?
Could allocate them on the stack!!! Assume we need 2 words of
memory.

???

mval

xval

bval

retadd

old BP

local A

local B

????

bp +4

bp + 6

bp + 8

← new BP

← SP

suba proc
push bp
mov bp,sp
sub sp,4
...
...
mov sp,bp
pop bp
ret 6

4

BR 6/00 10

A Stack Frame
A generalized picture of a stack frame used by a subroutine is
shown below:

???

passed
parms

retadd

old BP

local
storage

????

any number of words

any number of words

← new BP

← SP

parameters to
subroutine available
at [bp+4], [bp+6], etc
from BP

stack memory storage
for subroutine
available at [bp–2]
from Basepointer

BP also known as Frame
pointer

return address

BR 6/00 11

Code for Stack Frame in the Subroutine

suba proc
push bp
mov bp,sp
sub sp, 8
...
...
...
mov sp,bp
pop bp
ret 6

Save old basepointer
Get new basepointer

allocate local storage if
needed

Restore SP, free local storage
restore old basepointer

pop return address and clean
stack of passed parameters

BR 6/00 12

Enter/Leave instructions (+286)

suba proc
push bp
mov bp,sp
sub sp, 8
...
...
...
mov sp,bp
pop bp
ret 6

suba proc
enter 8,0

...

...

...
leave

ret 6

Enter creates stack frame, leave removes stack frame.
1st parameter to Enter is number of bytes of local storage.
We will ignore 2nd parameter, and always leave as 0.

5

BR 6/00 13

mecho example

• Write a subroutine that gets an input string from
the user keyboard, string stored on stack

• Subroutine uses the Dos service call ah= 0ah, int
21h which requires DX to point to some buffer
space (memory area)

n m bytes of string input by user

offset 0 1 2 3 n+2

maximum bytes
allowed to typed
by user

Actual bytes

BR 6/00 14

Comments on mecho example

• When calling the DOS int 21h, ah=0ah function,
we need to make sure that the DATA SEGMENT
is the same as the Stack segment since the data
buffer is on the stack (and the DOS function
assumes that the data buffer is pointed to by data
segment

• Must be sure to restore the data segment to
original value before returning from subroutine.

