
1

Program Control Instructions

•Generally Modify CS:IP

•Causes Modification in Execution Sequence (of Instructions)
• When Such a Program Flow Change Occurs:

a) Instructions in the BIU Inst. Queue Become Invalid

b) BIU Directly Fetches CS:IP Instruction from Memory

c) While EU Executes New Instruction, BIU Flushes/Refills Inst. Queue

• Classification
a) Jumps - Unconditional Control Transfers (synchronous)

b) Branches - Conditional Control Transfer

c) Interrrupts - Unconditional Control Transfers (asynchronous)

d) Iteration - More Complex Type of Branch

Control Instruction Summary

UNCONDITIONAL
jmp LABEL ;next instruction executed has LABEL
call LABEL ;next instruction executed has LABEL
ret ;next instruction executed is after the call
hlt ;nothing executed until RESET signal

ITERATION
loop LABEL ;cx <-- cx - 1, jump to LABEL if cx > 0
loope/loopz LABEL ;same as loop but ZF=1 also required
loopne/loopnz ;same as loop but ZF=0 also required

INTERRUPTS
int <immed8> ;Invoke the int. handler specified by immed8
into <immed8> ;same as int but OF=1 also
iret ;Return from interrupt handler

CONDITIONAL to follow

Simplest Control Instruction, jmp
jmp LABEL ;LABEL is offset address of instruction

;in the code segment

THIS IS EQUIVALENT TO:

mov ip, OFFSET LABEL

The mov form is illegal since it is not allowed to do this inside
the code segment

3 Forms of jmp

SHORT - 2 bytes, allows jump to ±127 locations from current address

NEAR - 3 bytes, allows jump to ±32K locations from current address

FAR - 5 bytes anywhere in memory

EB disp

E9 disphi displo

EA IP lo IP hi CS lo CS hi

386+ - Must Far Jump in to Enter Protected Mode!!!

2

Example with Short Jump

;Causes bx to count by 1 from 0 to 65535 to 0 to 65535 to …
xor bx, bx ;Clear bx and initialize status flags

start: mov ax, 1 ;ax <-- 1
add ax, bx ;ax <-- ax+bx
jmp next ;add a displacement to IP

; (+2 from xor to mov)
xor bx, bx ;Clear bx and initialize flags
xor ax, ax ;Clear ax and initialize flags

next: mov bx, ax ;bx <-- ax
jmp start ;add a displacement to IP

; (a negative value - 2’s comp.)

Indirect Jump

;assume that si contains either 0, 1 or 2
add si, si ;si <-- 2*si
add si, OFFSET TABLE ;si <-- si + <address of TABLE>
mov ax, cs:[si] ;ax gets an address from the jump table
jmp ax ;ip <-- ax

;the following jump TABLE is defined in the code segment!!!!
TABLE: DW ZERO

DW ONE
DW TWO

ZERO: ;code for ZERO option
.
.
.

ONE: ;code for ONE option
.
.
.

TWO: ;code for TWO option
.
.
.

• Address of Target is in Register

• Does NOT Add disp to IP - Transfer REG Contents to IP

Indirect Addressed Jump

;assume that si contains either 0, 1 or 2
add si, si ;si <-- 2*si
add si, OFFSET TABLE ;si <-- si + <address of TABLE>
jmp cs:[si] ;ip gets an address from the jump table

;the following jump TABLE is defined in the code segment!!!!
TABLE: DW ZERO

DW ONE
DW TWO

ZERO: ;code for ZERO option
.
.
.

ONE: ;code for ONE option
.
.
.

TWO: ;code for TWO option
.
.
.

• Address of Target is in Register

• Does NOT Add disp to IP - Transfer MEM Contents to IP

3

Conditional Control Instruction Summary
Simple Flag Branches

CONDITIONAL

jc LABEL ;jump on carry (CF=1)
jnc LABEL ;jump on no carry (CF=0)
je/jz LABEL ;jump if ZF=1 - jump if equal/zero
jne/jnz LABEL ;jump if ZF=0 - jump not equal/jump if zero|
jo LABEL ;jump if OF=1 - jump on overflow
jno LABEL ;jump if OF=0 - jump if no overflow
js LABEL ;jump on sign flag set (SF=1)
jns ;jump if no sign flag (SF=0)
jp/jpe ;jump if PF=1 - jump on parity/parity even
jnp/jpo LABEL ;jump if PF=0 - jump on no parity/parity odd

Jump based on single flag

Conditional Control Instruction Summary
Branches for unsigned comparisons

Jump is based on flags used for unsigned number
comparison (based on C, Z flag)

CONDITIONAL
ja/jnbe LABEL ;jump if CF=ZF=0 - jump above-jump not below/equal
jae/jnb LABEL ;jump if CF=0 - jump above/equal-jump not below
jb/jnae LABEL ;jump if CF=1 - jump below-jump not above/equal
jbe/jna LABEL ;jump if CF=1 or ZF=1 - jump equal - jump zero

Typical use:
cmp al,bl
jb there ; jump if al is ‘below’ bl

; unsigned comparison

Conditional Control Instruction Summary
Branches for signed comparisons

Typical use:
cmp al,bl
jl there ; jump if al is less than bl

; signed comparison

Jump is based on flags used for signed number
comparison (based on Z, S, V flags)

CONDITIONAL

jg/jnle LABEL ;jump if ZF=0 and (SF=OF) - jump greater/not less
nor equal
jge/jnl LABEL ;jump if SF=OF - jump greater-equal/not less than
jl/jnge LABEL ;jump if SF ≠ OF - jump less than/not greater nor
equal
jle/jng LABEL ;jump if ZF=1 or SF ≠ OF - jump less or equal/not
great than jnc LABEL ;same as jae/jnb

4

Branch - Conditional Transfers
•Always SHORT jumps in 86-286

• Can be SHORT or NEAR in 386+

• Condition Tested is Content of SF, ZF, CF, PF, OF

CONDITIONAL SET 386+

•Result in Byte of Memory - Either 00h or 01h

• Useful for Saving Flag Contents in Memory

EXAMPLE
setb T1 ;T1 <-- 01h if CF=1 else T1 <-- 00h

seto T1 ;T1 <-- 01h if OF=1 else T1 <-- 00h

Iteration Instruction, loop
• Combination of Decrement cx and Conditional Jump

• Decrements cx and if cx≠0 jumps to LABEL

• 386+ loopw (cx operation) and loopd (ecx operation)

Example:

ADDS PROC NEAR
mov cx, 100
mov si, OFFSET BLOCK1
mov di, OFFSET BLOCK2
cld

AGAIN: mov bx, di
lodsw
add ax, [bx]
mov di, bx
stosw
loop AGAIN
ret

ADDS ENDP

Iteration Instruction, loop

ADDS PROC NEAR
mov cx, 100 ;cx <-- 64h - number of words to add
mov si, OFFSET BLOCK1 ;si <-- offset of BLOCK1 (in ds)
mov di, OFFSET BLOCK2 ;di <-- offset of BLOCK2 (in ds)
cld ;Auto-increment si and di, DF=0

AGAIN: mov bx, di ;bx <-- di, save offset of BLOCK2
lodsw ;ax <-- ds:[si], si<--si+2, di<--di+2
add ax, [bx] ;ax <-- ax + ds:[bx]
mov di, bx ;di <-- bx, restore di with

; offset in BLOCK2
stosw ;es:[di] <-- ax, si<--si+2, di<--di+2
loop AGAIN ;cx <-- cx - 1, if cx≠0 jump to AGAIN
ret ;ip <-- ss:[sp]

ADDS ENDP

5

Procedures
• Group of Instructions that Perform Single Task

– (can be used as) a SUBROUTINE

call - invokes subroutine - pushes ip
ret - returns from subroutine - pops ip

• Uses MASM Directives: PROC and ENDP

• Must Specify

NEAR - intrasegment
FAR - intersegment

• Difference is op-code of ret

NEAR - c3h - pops IP
FAR - cbh - pops CS, pops IP

call Instruction

• Differs from jmp Since Return Address on Stack

NEAR call: 3 bytes - 1 opcode and 2 for IP
FAR call: 5 bytes - 1 opcode, 2 for IP and 2 for CS

• call with operand - can use 16-bit offset in any register
except segment registers

call bx ;pushes ip then jumps to cs:[bx]

call Instruction - Example

mov si, OFFSET COMP
call si

.

.

.
COMP PROC NEAR

push dx
mov dx, 03f8h
in al, dx
inc dx
out dx, al
pop dx
ret

COMP ENDP

6

call Instruction - Example Explained

mov si, OFFSET COMP ;get offset of COMP subroutine
call si ;push ip, ip<--si

.

.

.
COMP PROC NEAR

push dx ;Save current contents of dx
mov dx, 03f8h ;dx <-- 03f8h (an immediate data Xfer)
in al, dx ;al receives 1 byte of data from I/O

; device with output port address 03f8h
inc dx ;dx<--03f9h
out dx, al ;send 1 byte of data to I/O device

; input port with address 03f9h
pop dx ;restore dx to value at call time
ret ;ip<--ss:[sp], sp<--sp+2

COMP ENDP

call Instruction with Indirect Address
• Useful for Choosing Different Subroutines at Runtime
•Can Use a Table (like the jump Table Example)

;Assume bx contains 1, 2 or 3 for subroutine desired
TABLE DW ONE

DW TWO
DW THREE
dec bx
add bx, bx
mov di, OFFSET TABLE
call cs:[bx+di]
jmp CONT

ONE PROC NEAR
…

ONE ENDP
TWO PROC NEAR

…
TWO ENDP
THREE PROC NEAR

…
THREE ENDP
CONT: nop

call Instruction with Indirect Address
;Table of addresses of subroutines
TABLE DW ONE

DW TWO
DW THREE

;bx contains 1, 2 or 3 - desired subroutine
dec bx ;bx <-- 0, 1 or 2
add bx, bx ;bx <-- 0, 2 or 4
mov di, OFFSET TABLE ;di <-- TABLE offset
call cs:[bx+di] ;push ip, ip<--offset of subroutine
jmp CONT ;ip <-- offset of nop instruction

ONE PROC NEAR
…

ONE ENDP
TWO PROC NEAR

…
TWO ENDP
THREE PROC NEAR

…
THREE ENDP
CONT: nop

7

ret Instruction

NEAR - pops 16-bit value places in IP
FAR - pops 32-bit value places in CS:IP

• Type is Determined by PROC Directive
•Other Form of ret has Immediate Operand

a) modifies SP before restoring IP
b) Useful When Subroutine Modifies Stack

EXAMPLE

TEST PROC NEAR
push ax ;ss:[sp]<--ax, sp<--sp-2
push bx ;ss:[sp]<--ax, sp<--sp-2

…
ret 4 ;ip<--ss:[sp+4]

TEST ENDP

BX

AX
IP

SP

IPSP

