
1

BR 6/00 1

The Stack
• The stack is a memory area intended for storing

temporary values.

• The stack is accessed by the SS:SP segment/offset
combination (StackSegment: StackPointer)

• Some instructions make use of the stack area
during execution (push, pop, call, ret, many
others)

• If you need to store temporary values in memory,
the stack is the best place to do so.

BR 6/00 2

Data Storage via the Stack

The word ‘stack’ is used because storage/retrieval of words in
the stack memory area is the same as accessing items from a
stack of items.

Visualize a stack of boxes. To build a stack, you place box A,
then box B, then box C.

A A

B
A

B

C

Notice that you only have access to the last item placed on
the stack (the Top of Stack – TOS). You retrieve the boxes
from the stack in reverse order (C then B then A).

BR 6/00 3

Storing data on X86 stack via PUSH
The SP (Stack Pointer) register is used to access items on the
stack. The SP register points to the LAST value put on the
stack.

The PUSH operation stores a value to the stack:
PUSH AX ; SP= SP-2, M[SP] ← AX

The “push AX” instruction is equivalent to:
sub SP, 2 ; decrement SP by 2 for word operation
mov [SP], AX ; write value to stack.

Stack access only supports 16-bit or 32-bit operations

2

BR 6/00 4

Visualizing the PUSH operation

lastval
ue????

????

????

????

????

????

????

????

high memory

low memory

← SP

before PUSH AX

lastval
ueahal

????

????

????

????

????

????

????

high memory

low memory

← SP
(new SP =
old SP-2)

after PUSH AX

View memory as
being 16 bits
wide since stack
operations are
always 16 bit or
32 bits.

BR 6/00 5

Multiple Pushes

lastval
ue????

????

????

????

????

????

????

????

high memory

low memory

← SP

before

lastval
ueax

bx

cx

????

????

????

????

????

high memory

← SP

after all pushes

PUSH AX
PUSH BX
PUSH CX

BR 6/00 6

Reading Data from X86 stack via POP

The POP operation retrieves a value from the stack:
POP AX ; AX ← M[SP] , SP= SP+2

The “pop AX” instruction is equivalent to:
mov AX,[SP] ; read value from top of stack
add sp,2 ; increment SP by 2 for word operation

3

BR 6/00 7

Visualizing the POP operation

FF65

23AB

????

????

????

????

????

????

????

high memory

low memory

← SP

before POP AX

FF65

23AB

????

????

????

????

????

????

????

high memory

low memory

← SP

AX = 23AB

after POP AX

View memory as
being 16 bits
wide since stack
operations are
always 16 bit or
32 bits.

BR 6/00 8

Visualizing multiple POP operations

FF65

23AB

357F

D21B

38AC

23F4

????

????

????

high memory

low memory

← SP

before

FF65

23AB

357F

D21B

38AC

23F4

????

????

????

high memory

low memory

← SP

AX = 38AC
BX = D21B
CX = 357F

after all POPs

pop AX
pop BX
pop CX

BR 6/00 9

Saving/Restoring Registers

.data
msg db ‘This is a message. $’

.code
push ax ;save ax
push dx ;save dx
mov ah,9 ;display strng func
mov dx,offset msg
int 21h ; DOS call
pop dx ; restore dx
pop ax ;restore ax

Often need to save registers for some reason – stack is best
place to do this. Note that POP operations should occur in
reverse order of PUSH operations for correct values to be
loaded into registers!

4

BR 6/00 10

Other Push/Pop operations
a. Can push/pop any register except CS, IP

b. On 286+, can push an immediate value or memvalue:
push AF23h ; push 16-bit immediate on stack

push [bx+2] ; push value from Mem on stack

c. PUSHF/POPF will push/pop flag register

d. PUSHA/POPA (286+) -- pushes/pops registers
AX,CX,DX,BX,SP,BP,SI,DI on stack in this order

e. PUSHAD/POPAD (386+) – pushes same register, but 32-
bit value (EAX, ECX, etc)

BR 6/00 11

Procedures
• Group of Instructions that Perform Single Task

– (can be used as) a SUBROUTINE

call - invokes subroutine - pushes ip
ret - returns from subroutine - pops ip

• Uses MASM Directives at start/end of subroutine:
PROC and ENDP

• Must Specify
NEAR - intrasegment
FAR - intersegment

• Difference is op-code that is used for of ret

NEAR - c3h - pops IP
FAR - cbh - pops CS, pops IP

BR 6/00 12

call Instruction

• Differs from jmp Since Return Address is pushed on Stack

NEAR call: machine code: 3 bytes - 1 opcode,2 for IP
IP is pushed on stack

FAR call: 5 bytes - 1 opcode, 2 for IP and 2 for CS
IP, CS pushed on stack

• Typical use is to simply use ‘call subroutine_name’
call mysub

• call with operand - can use 16-bit offset in any register
except segment registers

call bx ;pushes ip then jumps to cs:[bx]

5

BR 6/00 13

Call Example

see example ‘subs.asm’ linked to WWW page.

BR 6/00 14

Stack Overflow, Underflow
• If you keep pushing data on the stack without

taking data off the stack, then the stack can
eventually grow larger than your allocated space
– Can begin writing to memory area that your code is in

or other non-stack data
– This is called stack OVERFLOW

• If you take off more data than you placed on the
stack, then stack pointer can increment past the
‘start’ of the stack. This is stack UNDERFLOW.

• Bottom line: You should allocate sufficient
memory for your stack needs, and pop off the
same amout of data as pushed in.

BR 6/00 15

Arrangement of Segments in .EXE file
.model small
.586
.stack 100h ; 256 bytes of stack

.data
oper_a DW 12F7h
oper_b DW 24FFh
sum DW 0000h

.code
START: mov ax, @data ;ax <-- data segment start address

mov ds, ax ;ds <-- initialize data segment register
lea bx, oper_a ;; get offset of oper_a
mov ax,[bx]
add ax,[bx+2]
mov [bx+4],ax ;store sum

mov ax, 4c00h ;ax <-- 4c DOS 21h program halt function
int 21h ;DOS service interrupt

END START

3 segments: Code,stack,data

6

BR 6/00 16

Linker Map File

Linker .map file tells size of segment in terms of bytes

Start Stop Length Name Class

00000H 00015H 00016H _TEXT CODE

00016H 0001BH 00006H _DATA DATA

00020H 0011FH 00100H STACK STACK

Origin Group

0001:0 DGROUP

Program entry point at 0000:0000

Code is 22 bytes long
Data is 6 bytes
Stack is 256 bytes

BR 6/00 17

Segments in Memory from .exe file
The ordering of the segments in memory will be code,
data, stack.

For this program, the .exe file is loaded with ordering:

data(DS=09B1,
oper_a offset = 0006)

code(CS=09B0, IP=0000
22 bytes long)

stack(SS=09B2, SP = 0100)

Note that SP is set to ‘top’ of stack data area. If stack grows
larger than 256 bytes, will overwrite data first, then code.

Note that physical address of end of CODE = physical address of
start of DATA
physical (CS:IP+016h) = 09B00 + 00000+ 016h = 09B16h
physical (DS:offset) = 09B10 +0006 = 09B16h

