## Universal Serial Bus

- Universal Serial Bus is a new synchronous serial protocol for low to medium speed data transmission
- Full speed signaling 12 Mbs
- Low Speed signaling 1.5 Mbs
- Intended devices are keyboards, mice, joysticks, speakers; other low to medium speed IO devices

BR 6/00

| PERFORMANCE                                                            | APPLICATIONS                                                                                          | ATTRIBUTES                                                                                                          |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| LOW SPEED<br>Interactive Devices<br>IO-100 Kb/s                        | Keyboard, Mouse<br>Stylus<br>Game peripherals<br>Virtual Reality peripherals<br>Monitor Configuration | Lower cost<br>Hot plug-unplug<br>Ease of use<br>Multiple peripherals                                                |
| MEDIUM SPEED<br>Phone, Audio,<br>Compressed Video<br>500Kb/s - 10Mbp/s | ISDN<br>PEX<br>POTS<br>Audio                                                                          | Low cost<br>Ease of use<br>Guaranteed latency<br>Guaranteed Bandwidth<br>Dynamic Attach- Detact<br>Multiple devices |
| HIGH SPEED<br>•Video, Disk<br>•25-500 Mb/s                             | Video<br>Disk                                                                                         | High Bandwidth<br>Guaranteed latency<br>Ease of use                                                                 |























| Bus State                       | Signaling Levels |                                                                            |                            |             |     |   |
|---------------------------------|------------------|----------------------------------------------------------------------------|----------------------------|-------------|-----|---|
|                                 | From             | From Originating Driver                                                    |                            | At Receiver |     |   |
| Differential "1"                | (D+) - (D        | (D+) - (D-) > 200 mV and D+ or D- > V <sub>sc</sub> (min.)                 |                            |             |     |   |
| Differential "0"                | (D+) - (D        | (D+) - (D-) < -200 mV and D+ or D- > $V_{\scriptscriptstyle\rm SE}$ (min.) |                            |             |     |   |
| Innut Levels                    |                  |                                                                            | 1                          |             | 1   | 1 |
| Differential Input Sensitivity  |                  | VDI                                                                        | (D+)-(D-)], and Figure 7-4 | 0.2         |     | + |
| Differential Common Mode Range  |                  | VCM                                                                        | Includes VDI range         | 0.8         | 2.5 | 1 |
| Single Ended Receiver Threshold |                  | VSE                                                                        |                            | 0.8         | 2.0 | 1 |
| Output Levels:                  |                  |                                                                            |                            |             |     |   |
| Static Output Low               |                  | VOL                                                                        | RL of 1.5 kΩ to 3.6 V      |             | 0.3 | V |
| Static Output High              |                  | Voн                                                                        | RL of 15 kΩ to GND         | 2.8         | 3.6 | V |
| Vse = Voltag                    | ge Single        | e Ende                                                                     | d threshold                |             |     |   |
|                                 |                  |                                                                            |                            |             |     |   |























| Data J State:            |                                                                                       |                                                                               |  |  |
|--------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| Low Speed                | Differential "0"                                                                      |                                                                               |  |  |
| Full Speed               | Differential "1"                                                                      |                                                                               |  |  |
| Data K State:            |                                                                                       |                                                                               |  |  |
| Low Speed                | Differential "1"                                                                      | Differential "1"                                                              |  |  |
| Full Speed               | Differential "0"                                                                      | Differential "0"                                                              |  |  |
| Idle State:              |                                                                                       |                                                                               |  |  |
| Low Speed                | Differential "0" and D- > $V_{_{\rm SE}}$ (max.) and D+ < $V_{_{\rm SE}}$ (min.)      |                                                                               |  |  |
| Full Speed               | Differential "1" and D+ $>$ V_{_{SE}} (max.) and D- $<$ V $_{_{SE}}$ (min.)           |                                                                               |  |  |
| Resume State:            |                                                                                       |                                                                               |  |  |
| Low Speed                | Differential "1" and D+ > $V_{se}$ (max.) and D- < $V_{se}$ (min.)                    |                                                                               |  |  |
| Full Speed               | Differential "0" and D- > $V_{_{\rm SE}}$ (max.) and D+ < $V_{_{\rm SE}}$ (min.)      |                                                                               |  |  |
| Start of Packet<br>(SOP) | Data lines switch from Idle to K State                                                |                                                                               |  |  |
| End of Packet<br>(EOP)   | D+ and D- < V <sub>se</sub> (min) for 2 bit times' followed by an Idle for 1 bit time | D+ and D- < $V_{se}$ (min) for ≥ 1 bir ime <sup>2</sup> followed by a J State |  |  |

















## Data Formatting

Data sent in packets

- Packets will have:
  - Start of Packet Sync Pattern (8 bits, 7 zeros + 1 one)
  - Packet ID (PID) identifies type of packet. 8 bits total, but only 4 unique bits
  - Address field 11 bits. 7 bits for USB device (so 128 possible USB devices on bus, host is always address 0), 4 bits for internal use by USB device . \_
  - Frame number field (11 bits) incremented by host

  - Data Payload (up to 1023 bytes for high-speed connection)
    CRC bits 5 bits for address field, and 16 bits for data field
  - EOP strobe single ended 0 (160ns-175 ns for high speed, 1.25 us to 1.75 us for high speed)
- Not all packets sent over USB bus have all of these fields (always have SOP, EOP and PID). Packet without data field is a token packet.

BR 6/00

| Table 6 II THE Types |          |          |                                                                                              |
|----------------------|----------|----------|----------------------------------------------------------------------------------------------|
| PID Type             | PID Name | PID[3:0] | Description                                                                                  |
| Token                | OUT      | b0001    | Address + endpoint number in host -> function<br>transaction                                 |
|                      | IN       | b1001    | Address + endpoint number in function -> host<br>transaction                                 |
|                      | SOF      | b0101    | Start of frame marker and frame number                                                       |
|                      | SETUP    | b1101    | Address + endpoint number in host -> function<br>transaction for setup to a control endpoint |
| Data                 | DATA0    | b0011    | Data packet PID even                                                                         |
|                      | DATA1    | b1011    | Data packet PID odd                                                                          |
| Handshake            | ACK      | b0010    | Receiver accepts error free data packet                                                      |
|                      | NAK      | b1010    | Rx device cannot accept data or Tx device cannot send<br>data                                |
|                      | STALL    | b1110    | Endpoint is stalled                                                                          |
| Special              | PRE      | b1100    | Host-issued preamble. Enables downstream bus traffic<br>to low speed devices.                |







## Transactions

- A transaction is transfer of data between host and USB device (*function*) either Host to Function (OUT) or Function to Host (IN)
- For IN transaction: Host transmits IN packet

   Function responds with data packet, or with NAK packet if can't return data, or with STALL packet if permanently stalled
  - If host receives valid DATA packet, then host returns an ACK packet to complete transaction.
- OUT transaction is handled similarly.

BR 6/00

22

<text><text><text><figure><text>

## Supported Data Transfer types

- · Control Transfers used to configure devices at power up
- Bulk Transfers large amounts of data transferred sequentially (i.e., printers, scanners)
- Interrupt transfers small, spontaneous data transfer from devices (mouse, keyboard, joystick). Interrupt transfers are scheduled transfers.
- Isochronous Transfers continuous, real-time data. Guaranteed bandwidth; data is sensitive to delivery delays. Examples are audio, low-bandwidth video. Only used by full speed devices.

BR 6/00

#### Frames

- Frames are the way that the bandwidth of the USB bus is allocated among the different devices that are connected to the USB
- A Frame is a 1.0 ms period whose time is divided up among the various connected USB devices by the host.
- Start-of-Frame packets are sent over bus every 1.0 ms so that high-speed devices can keep a 1 Khz clock that is synchronized to the host 1 Khz clock
- An example of dividing up the frame bandwidth is that any device that needs interrupt transfers is allocated a period within the frame
  - Host accesses the endpoint and checks to see if it has pending interrupt data. If data ready, grabs the data in the next frame.  $$_{\rm BR\,600}$$   $$_{\rm 25}$$

### Maximum bits per frame?

High Speed = 12 Mbps = 12 e 06 bits/per sec

1 Frame = 1.0 ms = 0.001 sec

.001 sec \* 12e06 bits/sec = 12,000 bits / frame

12,000 bits/frame = 1500 Bytes/frame maximum bytes

Maximum data payload is 1023 bytes – so only one maximum data payload can be sent in one frame (and only from a high speed device).

BR 6/00

### Summary of USB

- 127 Connected devices + host
- half-duplex data transmission using different signaling (200 mv differential signal)
- Data format is NRZI, with bit stuffing every six '1's
- Idle state is different for low speed and high speed connections (this is how they are distinguished)
- Data transmitted in packets, maximum data payload is 1023 bytes
- Time is split into 1.0 ms segments called frames, and bus bandwidth within a frame is allocated by the host to the different devices connected to the bus.

BR 6/00

27

| Higl<br>Mbj | IEEE F<br>n Speed Serial Interc<br>os to 400 Mbps                       | ireWire (IEE<br>connect standard –                                                                    | EE 1394)<br>offers speeds of 100<br>USB                                                       |  |  |  |
|-------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
|             | PERFORMANCE                                                             | APPLICATIONS                                                                                          |                                                                                               |  |  |  |
|             | LOW SPEED<br>Interactive Devices<br>I-10-100 Kb/s                       | Keyboard, Mouse<br>Stylus<br>Game peripherals<br>Virtual Reality peripherals<br>Monitor Configuration | Lower cost<br>Hot plug-unplug<br>Ease of use<br>Multiple peripherals                          |  |  |  |
|             | MEDIUM SPEED<br>-Phone, Audio,<br>Compressed Video<br>500Kb/s - 10Mbp/s | ISDN<br>PBX<br>POTS<br>Audio                                                                          | Low cost<br>Ease of use<br>Guaranteed Bandwidth<br>Oynamic Attach- Detach<br>Multiple devices |  |  |  |
|             | HIGH SPEED<br>•Video, Disk<br>•25-500 Mb/s                              | Video<br>Disk                                                                                         | High Bandwidth<br>Guaranteed latency<br>Ease of use                                           |  |  |  |
|             | Figure 3-1. Application Space Taxonomy                                  |                                                                                                       |                                                                                               |  |  |  |
|             |                                                                         | BR 6/00                                                                                               | 28                                                                                            |  |  |  |



# Firewire Details

- Tree topology like USB, maximum of 63 nodes + host
- Maximum of 16 hops between host and node
- Signaling is bi-directional, half duplex as in USB
- Signaling is Data Strobe signaling requires two binary signals to send one bit, each binary signal is represented by a differential pair of signals (so 4 wires total). Cable also has VDD, GND signals for 6 wires total (USB has 4 wires total).

BR 6/00

29

Data Strobe Signaling Serial Encoding method first used in a multicomputer called the *Transputer*, invented by SGS-Thompson 1 1 1 1 0 0 0 0 0 Strobe changes when Data does not. Data Strobe Strobe xor Data Extract clock from data and strobe as: Clock = Data XOR Strobe ; Data clocked on both edges30







# Cabling, Electrical Specs

- Cabling uses three pairs:
  - one pair for Vdd/GND
  - one pair for Data (differential Signaling)
  - one pair for Strobe (differential Signaling)
- 200 mV differential on Data (D+, D-), Strobe (S+, S-) centered about Vdd/2
- Cabling can provide power to nodes same as in USB spec.

BR 6/00