

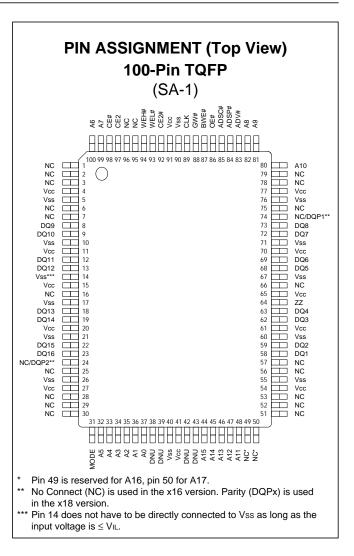
SYNCHRONOUS SRAM

FEATURES

- Fast access times: 8.5, 9, 10 and 11ns
- Fast OE# access time: 5ns
- Single +3.3V +10%/-5% power supply
- SNOOZE MODE for reduced power standby
- Common data inputs and data outputs
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- · Clock controlled, registered, address, data and control
- Internally self-timed WRITE cycle
- Burst control pin (interleaved or linear burst)
- Automatic power-down for portable applications
- 100-lead TQFP package for high density, high speed
- Low capacitive bus loading
- High 30pF output drive capability at rated access time
- DIMMs also available
- x16 and x18 versions available

OPTIONS	MARKING
Timing	
8.5ns access/12ns cycle	-8.5
9ns access/12ns cycle	-9
10ns access/15ns cycle	-10
11ns access/15ns cycle	-11
 Configurations 	
64K x 16	MT58LC64K16B3
64K x 18	MT58LC64K18B3
 Package 100-pin TQFP 	LG

• Part Number Example: MT58LC64K18B3LG-9


GENERAL DESCRIPTION

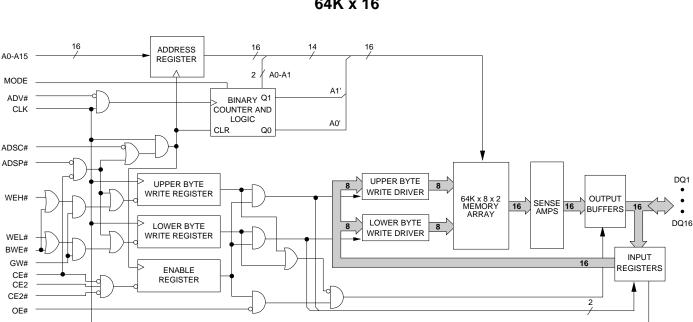
The Micron SyncBurst SRAM family employs highspeed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using an advanced CMOS process.

The MT58LC64K16/18B3 SRAM integrates a 64K x 16 or 64K x 18 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable (CE#), two additional chip enables for easy depth expansion (CE2#, CE2), burst control inputs (ADSC#,

64K x 16/18 SRAM

+3.3V SUPPLY, FLOW-THROUGH AND BURST COUNTER

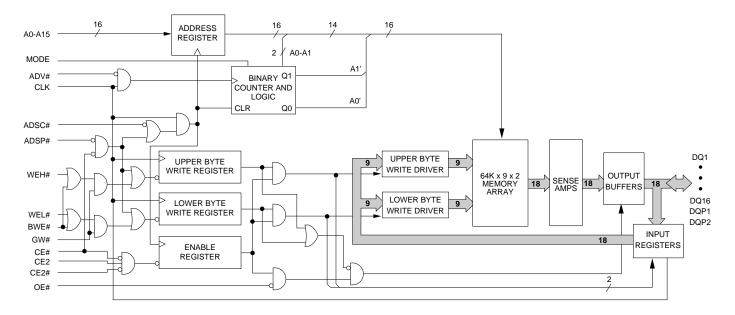
ADSP#, ADV#), byte write enables (WEH#, WEL#, BWE#) and global write (GW#).


Asynchronous inputs include the output enable (OE#), clock (CLK) and snooze enable (ZZ). There is also a burst mode pin (MODE) that selects between interleaved and linear burst modes. The data-out (Q), enabled by OE#, is also asynchronous. WRITE cycles can be from 1 to 2 bytes wide as controlled by the write control inputs.

Burst operation can be initiated with either address status processor (ADSP#) or address status controller (ADSC#) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (ADV#).

GENERAL DESCRIPTION (continued)

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. WEL# controls DQ1-DQ8 and DQP1. WEH# controls DQ9-DQ16 and DQP2, conditioned by BWE# being LOW. GW# LOW causes all bytes to be written. Parity bits are only available on the x18 version. The MT58LC64K16/18B3 operates from a +3.3V power supply and all inputs and outputs are TTL-compatible. The device is ideally suited for 486, Pentium[™], 680x0 and PowerPC[™] systems and those systems which benefit from a wide synchronous data bus. The device is also ideal in generic 16-, 18-, 32-, 36-, 64- and 72-bit-wide applications.



FUNCTIONAL BLOCK DIAGRAM 64K x 16

NOTE: Functional Block Diagrams illustrate simplified device operation. See Truth Table, Pin Descriptions and timing diagrams for detailed information.

FUNCTIONAL BLOCK DIAGRAM 64K x 18

PIN DESCRIPTIONS

TQFP PINS	SYMBOL	TYPE	DESCRIPTION
37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 80, 48, 47, 46, 45, 44	A0-A15	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
94, 93	WEH#, WEL#	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. WEL# controls DQ1- DQ8 and DQP1. WEH# controls DQ9-DQ16 and DQP2. Data I/O are tristated if either of these inputs are LOW.
87	BWE#	Input	Byte Write Enable: This active LOW input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
88	GW#	Input	Global Write: This active LOW input allows a full 16- or 18-bit WRITE to occur independent of the BWE# and WEn# lines and must meet the setup and hold times around the rising edge of CLK.
89	CLK	Input	Clock: This signal registers the address, data, chip enable, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
98	CE#	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions the internal use of ADSP#. This input is sampled only when a new external address is loaded.
92	CE2#	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded.
64	ZZ	Input	Snooze Enable: This active HIGH asynchronous input causes the device to enter a low-power standby mode in which all data in the memory array is retained. When active, all other inputs are ignored.
97	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded.
86	OE#	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
83	ADV#	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP# cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).

PIN DESCRIPTIONS (continued)

TQFP PINS	SYMBOL	TYPE	DESCRIPTION
84	ADSP#	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC#, but dependent upon CE# being LOW.
85	ADSC#	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ or WRITE is performed using the new address if CE# is LOW. ADSC# is also used to place the chip into power-down state when CE# is HIGH.
31	MODE	Input	Mode: This input selects the burst sequence. A LOW on this pin selects LINEAR BURST. NC or HIGH on this pin selects INTERLEAVED BURST. Do not alter input state while device is operating.
58, 59, 62, 63, 68, 69, 72, 73, 8, 9, 12, 13, 18, 19, 22, 23	DQ1-DQ16	Input/ Output	SRAM Data I/O: Low Byte is DQ1-DQ8. High Byte is DQ9-DQ16. Input data must meet setup and hold times around the rising edge of CLK.
74, 24	NC/DQP1, NC/DQP2	No Connect/ Input/ Output	No Connect/Parity Data I/O: On the x16 version, these pins are No Connect (NC). On the x18 version, Low Byte Parity is DQP1, High Byte Parity is DQP2.
4, 11, 15, 20, 27, 41, 54, 61, 65, 70, 77, 91	Vcc	Supply	Power Supply: +3.3V +10%/-5%.
5, 10, 17, 21, 26, 40, 55, 60, 67, 71, 76, 90	Vss	Supply	Ground: GND.
14	Vss	Input	Pin 14 does not have to be connected directly to GND as long as the input voltage is $\leq V_{IL}$. This input is not connected to the Vss bus internally.
38, 39, 42, 43	DNU	-	Do Not Use: These signals may either be unconnected or wired to GND to improve package heat dissipation.
1, 2, 3, 6, 7, 16, 25, 28, 29, 30, 49, 50, 51, 52, 53, 56, 57, 66, 75, 78, 79, 95, 96	NC	-	No Connect: These signals are not internally connected. These signals may be connected to ground to improve package heat dissipation.

INTERLEAVED BURST ADDRESS TABLE (MODE = NC OR HIGH)

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

LINEAR BURST ADDRESS TABLE (MODE = GND)

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX10	XX11	XX00
XX10	XX11	XX00	XX01
XX11	XX00	XX01	XX10

PARTIAL TRUTH TABLE FOR WRITE COMMANDS

Function	GW#	BWE#	WEL#	WEH#
READ	Н	Н	Х	Х
READ	Н	L	Н	Н
WRITE LOW Byte	Н	L	L	Н
WRITE HIGH Byte	Н	L	Н	L
WRITE all bytes	Н	L	L	L
WRITE all bytes	L	Х	Х	Х

TRUTH TABLE

OPERATION	ADDRESS USED	CE#	CE2#	CE2	ZZ	ADSP#	ADSC#	ADV#	WRITE#	OE#	CLK	DQ
Deselected Cycle, Power-down	None	Н	Х	Х	L	Х	L	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	L	L	Х	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	Х	L	L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	L	Н	L	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	Х	L	Н	L	Х	Х	Х	L-H	High-Z
SNOOZE MODE, Power-down	None	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	High-Z
READ Cycle, Begin Burst	External	L	L	Н	L	L	Х	Х	Х	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	L	Х	Х	Х	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	L	Н	L	Н	L	Х	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	L	Н	L	Н	L	Х	н	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	Н	L	Х	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Х	Х	Х	L	н	Н	L	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	L	Х	L-H	D
READ Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	Н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	L	Х	L-H	D

- **NOTE:** 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE#=L means any one or more byte write enable signals (WEH#, WEL#, and BWE#) are LOW or GW# is LOW. WRITE#=H means all byte write enable signals and GW# are HIGH.
 - 2. WEL# enables writes to DQ1-DQ8 and DQP1. WEH# enables writes to DQ9-DQ16 and DQP2. DQP1 and DQP2 are only available on the x18 version.
 - 3. All inputs except OE# and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Wait states are inserted by suspending burst.
 - 5. For a write operation following a read operation, OE# must be HIGH before the input data setup time and held HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
 - 7. ADSP# LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signal and BWE# LOW or GW# LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	0.5V to +4.6V
VIN	0.5V to Vcc+0.5V
Storage Temperature (plastic)	55°C to +150°C
Junction Temperature**	+150°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See Micron Technical Note TN-05-14 for more information.

1

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

DESCRIPTION CONDITIONS SYMBOL MIN MAX UNITS NOTES Input High (Logic 1) Voltage Ин 2.0 Vcc + 0.3 V 1, 2 Input Low (Logic 0) Voltage V VIL -0.3 0.8 1, 2 $0V \le VIN \le VCC$ IL -1 1 14 Input Leakage Current μΑ 1 ILo -1 **Output Leakage Current** Output(s) disabled, μΑ $0V \le VIN \le VCC$ Іон = -4.0mA 2.4 V 1, 11 **Output High Voltage** Vон V **Output Low Voltage** Io∟ = 8.0mA Vol 0.4 1, 11 Supply Voltage V Vcc 3.135 3.6

(0°C \leq T_A \leq 70°C; Vcc = +3.3V +10%/-5% unless otherwise noted)

					MA	Х			
DESCRIPTION	CONDITIONS	SYM	ТҮР	-8.5	-9	-10	-11	UNITS	NOTES
Power Supply Current: Operating	Device selected; All inputs \leq VIL or \geq VIH; Cycle time \geq ^t KC MIN; Vcc = MAX; Outputs open	Icc	100	250	250	200	200	mA	3, 12, 13
Power Supply Current: Idle	Device selected; Vcc = MAX; ADSC#, ADSP#, ADV#, GW#, BW# ≥ VIH; All inputs ≤ Vss +0.2 or ≥ Vcc -0.2; Cycle time ≥ ^t KC MIN; Outputs open	Icc1	18	75	75	60	60	mA	3, 12, 13
CMOS Standby	Device deselected; Vcc = MAX; All inputs \leq Vss +0.2 or \geq Vcc -0.2; All inputs static; CLK frequency = 0	ISB2	0.5	5	5	5	5	mA	12, 13
TTL Standby	Device deselected; Vcc = MAX; All inputs ≤ Vi∟ or ≥ Viн; All inputs static; CLK frequency = 0	lsвз	15	25	25	25	25	mA	12, 13
Clock Running	Device deselected; Vcc = MAX; All inputs \leq Vss +0.2 or \geq Vcc -0.2; Cycle time \geq ^t KC MIN	ISB4	18	75	75	60	60	mA	12, 13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	MAX	UNITS	NOTES
Control Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	3	4	рF	4
Input/Output Capacitance (DQ)	Vcc = 3.3V	Co	4	5	pF	4
Address Capacitance		СА	3	3.5	pF	4
Clock Capacitance		Сск	2.5	3	pF	4

THERMAL CONSIDERATIONS

DESCRIPTION	CONDITIONS	SYMBOL	TQFP TYP	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still air, soldered on 4.25 x 1.125-inch,	θ_{JA}	28	°C/W	4
Thermal resistance - Junction to Case	4-layer printed circuit board	θ_{JC}	4	°C/W	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = +3.3V +10%/-5%)

DESCRIPTION		-8	8.5		9		10	-1	11		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock				•	•	•		•	•		
Clock cycle time	^t KC	12		12		15		15		ns	
Clock Frequency	^t KF		83		83		66		66	MHz	
Clock HIGH time	^t KH	4		4		5		5		ns	
Clock LOW time	^t KL	4		4		5		5		ns	
Output Times											
Clock to output valid	^t KQ		8.5		9		10		11	ns	
Clock to output invalid	^t KQX	3		3		3		3		ns	
Clock to output in Low-Z	^t KQLZ	4		4		4		4		ns	4, 6, 7
Clock to output in High-Z	^t KQHZ		5		5		5		5	ns	4, 6, 7
OE# to output valid	tOEQ		5		5		5		5	ns	9
OE# to output in Low-Z	^t OELZ	0		0		0		0		ns	4, 6, 7
OE# to output in High-Z	^t OEHZ		5		5		5		5	ns	4, 6, 7
Setup Times											
Address	^t AS	2.5		2.5		2.5		2.5		ns	8, 10
Address Status (ADSC#, ADSP#)	^t ADSS	2.5		2.5		2.5		2.5		ns	8, 10
Address Advance (ADV#)	^t AAS	2.5		2.5		2.5		2.5		ns	8, 10
Byte Write Enables (WEH#, WEL#, GW#, BWE#)	tWS	2.5		2.5		2.5		2.5		ns	8, 10
Data-in	^t DS	2.5		2.5		2.5		2.5		ns	8, 10
Chip Enable (CE#)	^t CES	2.5		2.5		2.5		2.5		ns	8, 10
Hold Times			1	•	•			•	•		
Address	^t AH	0.5		0.5		0.5		0.5		ns	8, 10
Address Status (ADSC#, ADSP#)	^t ADSH	0.5		0.5		0.5		0.5		ns	8, 10
Address Advance (ADV#)	^t AAH	0.5		0.5		0.5		0.5		ns	8, 10
Byte Write Enables (WEH#, WEL#, GW#, BWE#)	tWH	0.5		0.5		0.5		0.5		ns	8, 10
Data-in	^t DH	0.5		0.5		0.5		0.5		ns	8, 10
Chip Enable (CE#)	^t CEH	0.5		0.5		0.5		0.5		ns	8, 10

AC TEST CONDITIONS

Input pulse levels	/ss to 3.0V
Input rise and fall times	2.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load See Figur	es 1 and 2

$Z_{O} = 50\Omega$ $V_{T} = 1.5V$

Figure 1 OUTPUT LOAD EQUIVALENT

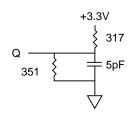


Figure 2 OUTPUT LOAD EQUIVALENT

NOTES

- 1. All voltages referenced to Vss (GND).
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Figure 1 unless otherwise noted.
- 6. Output loading is specified with $C_L = 5pF$ as in Figure 2. Transition is measured $\pm 500mV$ from steady state voltage.
- 7. Reference Technical Note TN-58-09, "Synchronous SRAM Bus Contention Design Considerations," for a more thorough discussion on these parameters.
- 8. A READ cycle is defined by byte write enables all HIGH or ADSP# LOW for the required setup and hold times. A WRITE cycle is defined by at least one byte Write enable LOW and ADSP# HIGH for the required setup and hold times.
- 9. OE# is a "don't care" when a byte write enable is sampled LOW.
- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP# or ADSC# is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP# or ADSC# is LOW) to remain enabled.

- 11. The load used for VOH, VOL testing is shown in Figure 2. AC load current is higher than the stated DC values. AC I/O curves are available upon request.
- 12. "Device Deselected" means device is in POWER-DOWN mode as defined in the truth table. "Device Selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 15ns cycle time.
- 14. MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu$ A.

LOAD DERATING CURVES

Micron 64K x 16 and 64K x 18 Synchronous SRAM timing is dependent upon the capacitive loading on the outputs. The data sheet is written assuming a load of 30pF. An approximate formula for calculating access time changes with load capacitance follows:

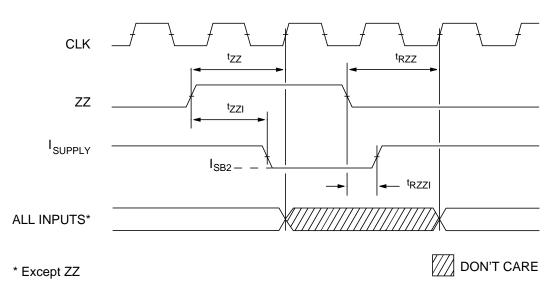
 $\Delta^t KQ = 0.0195 \text{ ns/pF x } \Delta C_L \text{ pF} + 0.0816 \text{ns.}$ (Note: This is preliminary information subject to change.)

For example, if the SRAM loading is 22pF, ΔC_L is -8pF (8pF less than rated load). The clock to valid output time of the SRAM is reduced by 0.0268 x 8 = 0.214ns. If the device is a 12ns part, the worst-case ^tKQ becomes 11.79ns (approximately).

For a more accurate derating calculation, see the capacitive loading derating curves in Micron Technical Note TN-58-11, "3.3V Synchronous SRAM Capacitive Loading."

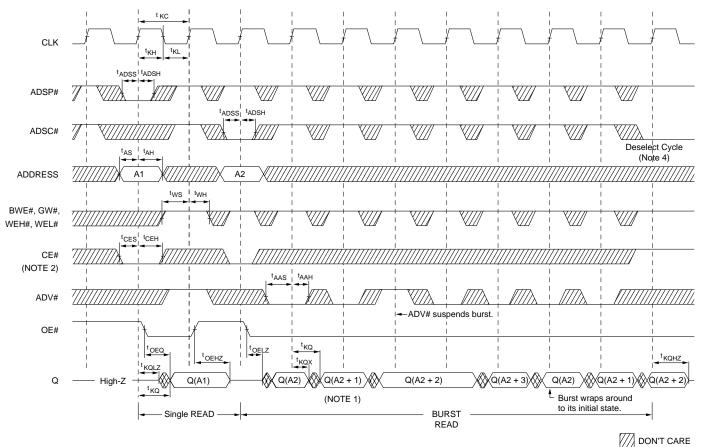
SNOOZE MODE

SNOOZE MODE is a low current, "power-down" mode in which the device is deselected and current is reduced to ISB2. The duration of SNOOZE MODE is dictated by the length of time the ZZ pin is in a HIGH state. After entering SNOOZE MODE, all inputs except ZZ become gated inputs and are ignored.


The ZZ pin (pin 64) is an asynchronous, active HIGH input that causes the device to enter SNOOZE MODE. When the ZZ pin becomes a logic HIGH, ISB2 is guaranteed after the setup time ^tZZ is met. Any access pending when entering SNOOZE MODE is not guaranteed to successfully complete. Therefore, SNOOZE MODE must not be initiated until valid pending operations are completed.

SNOOZE MODE ELECTRICAL CHARACTERISTICS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Current during SNOOZE MODE	ZZ ≥ Viн	ISB2Z		5	mA	
ZZ active to input ignored		^t ZZ		^t KC	ns	1
ZZ inactive to input sampled		^t RZZ	^t KC		ns	1
ZZ active to snooze current		tZZI		^t KC	ns	1
ZZ inactive to exit snooze current		^t RZZI	0		ns	1


NOTE: 1. This parameter is sampled.

SNOOZE MODE WAVEFORM

READ TIMING

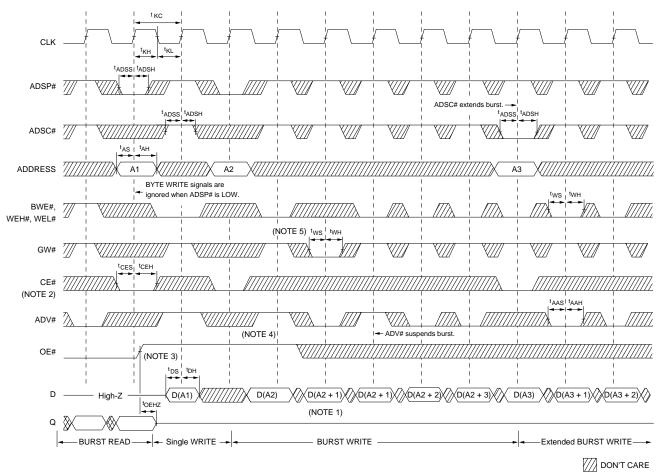
READ TIMING PARAMETERS

	-8	.5	-	9	-1	0	-1	1	
SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
^t KC	12		12		15		15		ns
^t KF		83		83		66		66	MHz
^t KH	4		4		5		5		ns
^t KL	4		4		5		5		ns
^t KQ		8.5		9		10		11	ns
^t KQX	3		3		3		3		ns
^t KQLZ	4		4		4		4		ns
^t KQHZ		5		5		5		5	ns
^t OEQ		5		5		5		5	ns
^t OELZ	0		0		0		0		ns
^t OEHZ		5		5		5		5	ns

	-8	.5	-	9	-1	0	-1	11	
SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
^t AS	2.5		2.5		2.5		2.5		ns
^t ADSS	2.5		2.5		2.5		2.5		ns
^t AAS	2.5		2.5		2.5		2.5		ns
tWS	2.5		2.5		2.5		2.5		ns
^t CES	2.5		2.5		2.5		2.5		ns
^t AH	0.5		0.5		0.5		0.5		ns
^t ADSH	0.5		0.5		0.5		0.5		ns
^t AAH	0.5		0.5		0.5		0.5		ns
^t WH	0.5		0.5		0.5		0.5		ns
^t CEH	0.5		0.5		0.5		0.5		ns

NOTE: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.

2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE# is HIGH, CE2# is HIGH and CE2 is LOW.


3. Timing is shown assuming that the device was not enabled before entering into this sequence. OE# does not cause Q to be driven until after the following clock rising edge.

4. Outputs are disabled ^tKQHZ after deselect.

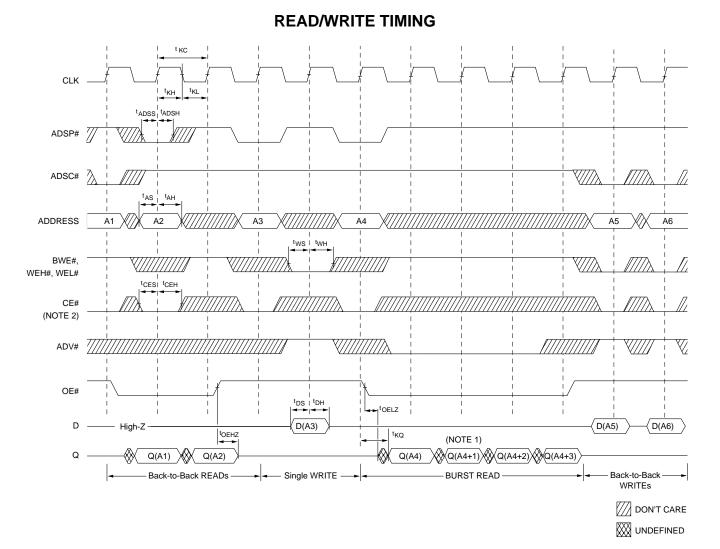
WRITE TIMING

WRITE TIMING PARAMETERS

	-8	.5	-	-9		-10		-11	
SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
^t KC	12		12		15		15		ns
^t KF		83		83		66		66	MHz
^t KH	4		4		5		5		ns
^t KL	4		4		5		5		ns
^t OEHZ		5		5		5		5	ns
^t AS	2.5		2.5		2.5		2.5		ns
^t ADSS	2.5		2.5		2.5		2.5		ns
^t AAS	2.5		2.5		2.5		2.5		ns
tWS	2.5		2.5		2.5		2.5		ns

	-8	.5	-9		-10		-11		
SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
^t DS	2.5		2.5		2.5		2.5		ns
^t CES	2.5		2.5		2.5		2.5		ns
^t AH	0.5		0.5		0.5		0.5		ns
^t ADSH	0.5		0.5		0.5		0.5		ns
^t AAH	0.5		0.5		0.5		0.5		ns
^t WH	0.5		0.5		0.5		0.5		ns
^t DH	0.5		0.5		0.5		0.5		ns
^t CEH	0.5		0.5		0.5		0.5		ns

NOTE: 1. D(A2) refers to output from address A2. D(A2+1) refers to output from the next internal burst address following A2.


2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE# is HIGH, CE2# is HIGH and CE2 is LOW.

3. OE# must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.

4. ADV# must be HIGH to permit a WRITE to the loaded address.

5. Full-width WRITE can be initiated by GW# LOW or GW# HIGH and BWE#, WEH#, and WEL# LOW.

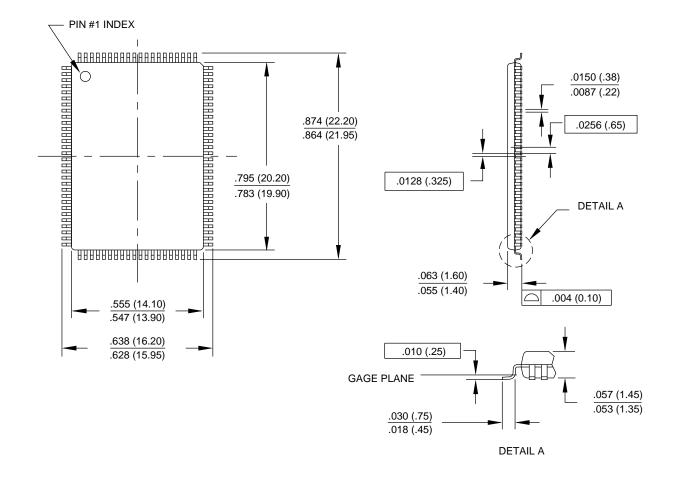
READ/WRITE TIMING PARAMETERS

	-8	-8.5		-9		-10		-11	
SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
^t KC	12		12		15		15		ns
^t KF		83		83		66		66	MHz
^t KH	4		4		5		5		ns
^t KL	4		4		5		5		ns
^t KQ		8.5		9		10		11	ns
^t OELZ	0		0		0		0		ns
^t OEHZ		5		5		5		5	ns
^t AS	2.5		2.5		2.5		2.5		ns
^t ADSS	2.5		2.5		2.5		2.5		ns

	-8	.5	-9		-10		-11		
SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
tWS	2.5		2.5		2.5		2.5		ns
^t DS	2.5		2.5		2.5		2.5		ns
^t CES	2.5		2.5		2.5		2.5		ns
^t AH	0.5		0.5		0.5		0.5		ns
^t ADSH	0.5		0.5		0.5		0.5		ns
^t WH	0.5		0.5		0.5		0.5		ns
^t DH	0.5		0.5		0.5		0.5		ns
^t CEH	0.5		0.5		0.5		0.5		ns

NOTE: 1. Q(A4) refers to output from address A4. Q(A4+1) refers to output from the next internal burst address following A4.

2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE# is HIGH, CE2# is HIGH and CE2 is LOW.


3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP#, ADSC# or ADV# cycle is performed.

4. GW# is HIGH.

5. Back-to-back READs may be controlled by either ADSP# or ADSC#.

100-PIN TQFP SA-1

- **NOTE:** 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.
 - 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900, Micron DataFax: 208-368-5800 E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992