
EE 3724 Test #2 Solutions - Fall '01 – Reese

Work all problems. Closed book, closed notes; You may use the supplied reference material.
Powers of 2: 1K = 210, 1M = 220, 29= 512, 28=256, 27=128, 26 = 64, 25 =32, 24 = 16

1. 10 pts. Assume a 80486 processor (32-bit data bus). Mark the value of the byte enable signals as

TRUE (asserted) or FALSE (negated) for each of the following memory read operations. BE0 is for
the lower 8 data lines (D7-D0), while BE3 is for the upper 8 data lines (D31-D24).
Address values are in HEX!!!
 BE3 BE2 BE1 BE0
a. mov ax, [7FFFC] F F T T

b. mov al, [CFF06] F T F F

c. mov ax, [03A49] F T T F

2. (10 pts) Assume a 80486 processor (32-bit data bus). Mark the following accesses as ALIGNED or
MISALIGNED.

a. mov ax, [0ADCB] ALIGNED MISALIGNED

b. mov ax, [0ADC1] ALIGNED MISALIGNED

b. mov eax, [0ADCC] ALIGNED MISALIGNED

3. (10 pts) Assume a Pentium processor with a 64 bit wide data bus.

a. How many CLOCK cycles would it take to transfer 128 bytes using normal read cycles?
8 bytes transferred per read cycle, 128/8 = 16 read cycles, 2 clocks per read cycle, so 32 clocks.

b. How many CLOCK cycles would it take to transfer 128 bytes using burst read cycles?
32 bytes transferred per burst cycle, 128/32 = 4 burst cycles, 5 clocks per burst cycle, so 20 clocks

c. How many clock cycles would it take to transfer 128 bytes using pipelined burst read cycles?
32 bytes transferred per burst cycle, 128/32 = 4 burst cycles, 4 clocks per pipelined burst cycle, but
first cycle must be non-pipelined burst cycle, so 5 + 3(4) = 17 clocks.

4. (10 pts) Look at the code below and answer the questions

MAIN push ax ; push PARAMETER A
 push bx ; push PARAMETER B
 push cx ; push PARAMETER C
 call SUBA
 …..

SUBA proc far ;;; FAR subroutine!!!!!!!
 Push bx
 Push si
 Push di
 Enter 4,0
 ;; stack frame has been setup, POINT A
 ;;; other instructions

 ;; code needed here to clean up stack frame and passed parameters, and return to main
SUBA endp

a. At 'point A', write an instruction that will read the value of parameter A into register AX.
This instruction cannot change the stack (i.e, a 'POP' is incorrect answer). You must use
BP as your index register. It will help if you draw a picture of the stack. BE CAREFUL -
SUBA is a 'far' procedure call from MAIN!!!

move ax, [bp+16]

b. Write a TWO INSTRUCTION SEQUENCE at the end of 'SUBA' that will clean up the

stack frame, return to the main program, and clean up the stack of the passed parameters A
and B.

As corrected in class, this actually takes more than 2 instructions:
 leave
 pop di
 pop si
 pop bx
 ret 6

5. (6 pts) For a memory chip with control lines CS, OE, and W, what control lines must be asserted

during:

 a. a write operation? Both CS and W must be asserted

 b. a read operation? Both CS and OE must be asserted.

parm B

Retadd: IP

old BP

reserved

reserved

????

← SP

BP→

parm A

BP+2

BP+14
BP+16

parm CBP+12

Retadd:CSBP+10

si
bx

BP+8

BP+6

di

BP+4

Far call
pushes both
CS and IP

parm B

Retadd: IP

old BP

reserved

reserved

????

← SP

BP→

parm A

BP+2

BP+14
BP+16

parm CBP+12

Retadd:CSBP+10

si
bx

BP+8

BP+6

di

BP+4

Far call
pushes both
CS and IP

6. (14 pts) Fill in the blanks using one of the following terms. You can also use a number to fill in the

blank like 10, 2, 7, etc:

DRAM RDRAM SRAM SSRAM 'Access time' 'Cycle Time' 'Chip Select' 'non-volatile'
'volatile' ' 'output enable' 'capacitor'

a. This memory technology has a 6 transistor cell: ______{SRAM,SSRAM}_____

b. This memory technology has an internal counter to support burst mode: __{SRAM,RDRAM}__

c. This memory technology has access time = cycle time: __{SRAM,SSRAM}__________

d. This memory technology uses limited swing signaling technology to achieve high bandwidth:
___RDRAM_____________

e. Time from when address is valid to time when data is valid: __ACCESS TIME_______

f. # of address pins for a 1M x 1 DRAM: ___10__________

g. This memory technology has memory cells which need periodic refreshing:
_{DRAM,RDRAM}________

7. (10 pts) For the address decoder below:
 a. Give the range of addresses that output Y6 is valid for (Use HEX addresses)

b. How many TOTAL bytes is this address decoder valid for? (give the answer in Kbytes, or
Mbytes)

I0
I1

Y0

Y1

Y2

Y3

A14

A15

A17

EN

3-to-8 Decoder
I2 is MSB, I0 is LSB

Y4

Y5

Y6

Y7

I2A16

A18

I0
I1

Y0

Y1

Y2

Y3

EN

3-to-8 Decoder
I2 is MSB, I0 is LSB

Y4

Y5

Y6

Y7

I2

A19

I0
I1

Y0

Y1

Y2

Y3

A14

A15

A17

EN

3-to-8 Decoder
I2 is MSB, I0 is LSB

Y4

Y5

Y6

Y7

I2A16

A18

I0
I1

Y0

Y1

Y2

Y3

EN

3-to-8 Decoder
I2 is MSB, I0 is LSB

Y4

Y5

Y6

Y7

I2

A19

A19 A18 A17 A16 A15 A14 A13-A0
 1 0 1 1 1 0 0 …. 0 = B8000
 1 0 1 1 1 0 1…..1 = BBFFF

A16-A0 = 17 address lines, 217 = 128 Kbytes

8. (10 pts) Write a subroutine that will copy the NULL terminated string pointed to by register SI to the
location pointed to by DI. During the copy operation, ONLY copy the letters ‘A’-‘Z’, and ‘a’-‘z’ –
ignore any ASCII codes outside of these ranges. You must copy the NULL terminator as well. On
entry to the subroutine, SI points to the string to be copied, and DI points to the destination address.

scopy proc near
 mov al,[si] ;get a byte
 cmp al,0 ;check if at end
 je exit ;exit if at end
 cmp al, ‘A’
 jl skip ; if lower than ‘A’, skip
 cmp al,’Z’
 jle docopy ; if between ‘A’-‘Z’, copy
 cmp al,’z’
 ja skip ;if higher than ‘z’ skip
 cmp al,’a’
 jb skip ;if lower than ‘a’, skip
docopy: mov [di],al ;copy it
 inc di ;increment destination pointer
skip: inc si ;increment source pointer
 jmp scopy ;do it again
exit: mov [di],al ;copy null
 ret
scopy endp

9. (10 pts) Write a subroutine that will write the value in AL to the screen in ASCII binary format (i.e., if

AL = A3h, then “10100011” would appear on the screen. You can only use the DOS INT 21h single
character output function (AH =02, DL has character to output).

pbin proc near
 mov cx,8 ;need to print 8 digits
lp1: shl al,1 ;shift MSB into carry flag
 jc do_one ;if C=1, then print a ‘1’
 mov dl, 30h ;print a ‘0’
 jmp print ;
do_one: mov dl, 31h ;get a ‘1’
print: mov ah,02 ; print digit in dl
 int 21h
 loop lp1 ;loop until 8 digits printed
 ret

10. (10 pts) Write a subroutine called 'memdump' that will print 16 bytes starting at DS:SI to the
screen in the format used by the "DEBUG" program as shown below:

C:\users>debug

0AC3:0100 32 DB 86 1C E8 39 EB 3B D6 73 1B 56 51 8B CE 8B 2....9.;.s.VQ...

Note that the first thing printed is the hex value of DS:SI, followed by hex values of the 16 bytes

starting at [DS:SI]. After that, the ASCII representation of the 16 bytes is printed. If the ASCII
representation is a non-printable character (ASCII value less than 12H), then a '.' (period) is printed instead.

You may use the DOS single character output function (INT 21H, AH =02, DL has character to

output) or any of the Irvine link library subroutines.

As explained in class, assume the existence of writeint_byte function in the Irvine link library than

functions the same as writeint, except that it writes an 8 bit value contained in AL.

Dprint proc near
 Mov ax,ds
 Mov bx,16
 Call writeint ;print segment value
 Mov dl,’:’
 Mov ah,02
 Int 21h ;print ‘:’
 Mov ax,si
 Mov bx,16
 Call writeint ;print offset value
 Mov cx,16 ;loop 16 times
 Push si ;save SI for later
Lp1: mov dl, 20h ;space char
 Mov ah,02
 Int 21h ;print space character

mov al,[si]
 call writeint_byte ;write a byte out
 inc si ;point at next byte
 loop lp1 ;do 16 times

 mov dl,20h
 mov ah,02
 int 21h; ;print a space
;;loop again, print ascii value
 pop si ;point back at start
 mov cx,16 ;loop 16 times
lp2: mov dl,[si]
 cmp dl,12h ; check if printable ASCII
 jae do_print ;if yes, then print it
 mov dl,’.’ ;get period
do_print:
 mov ah,02
 int 21h ;print the character
 loop lp2 ;loop 16 times
 ret

