

EE 3724 Test #2 Solutions - Summer ’00 – Reese

1. (33 pts) Assume the following memory contents at the start of each of the following instructions

 Address Contents
09A0:0000 C5 67 A5 00 12 BC 34 BB F4 72 09 A3 29 01 D4 CE
09A0:0010 FE 89 02 D8 A4 8A 7C DD 90 3C 9B 83 65 19 F6 8A
09A0:0020 A7 CC 9A BD 8E 90 2C 59 1C 90 0E 13 8C 39 58 C6
09A0:0030 76 D7 CA FF D8 71 18 24 40 A8 2C 76 93 C5 0F 9E

09A0:0040 82 A6 54 2E 9A 20 0A 98 E4 A0 0E 25 38 29 2C 86
Assume the following register contents at the START of each of the following instructions.
 ES: 09A0, DS: 09A0, SS: 09A1
 AX = E265, DX = 73A2, CX = 0000, SP = 0018, BP=002E

Give the value of the affected register OR affected memory location after each instruction. IF MEMORY
IS MODIFIED, you MUST show the modified locations on the ABOVE memory map! LIST ALL
registers that are affected by the instructions except for the flag registers.

a. Push ax sp = 0016, see map above (SS:SP = 09A1:0018 = 09A0: 0028)

b. sar dl, 2 dl=E8h

c. shr dl,2 dl= 28h

d. shl al,1 al = CAh

e. xor dl, al dl = C7h

f. or dl, F0h dl = C7h

g. not dl dl = F2h

h. pop dx dx = 901C h sp=001A

i. mul dl ax = al * dl = 101 * 162 = 16362 = 3FEA h

j. imul dl ax = ax * dl = 101 * -94 = -9494 = DAEA h

k. and dl, 22 dl = 22 h

65 E2

2.(27 pts) Assume the same register contents/memory contents as above. For EACH of the following two
instruction sequences, tell if the jump is TAKEN or NOT TAKEN.

a. cmp al,dl
jne there TAKEN (al not equal to dl)

b. cmp al,dl
jl there NOT_TAKEN (al, a postive number, is not less than dl, a negative number)

c. cmp al,dl
ja there NOT_TAKEN (al is not higher than dl)

d. cmp ax,dx
jg there NOT_TAKEN (ax, a negative number is not greater than dx, a postive number)

e. cmp ax,dx
jb there NOT_TAKEN (ax is not below dx)

f. test al,1
jnz there TAKEN (result of al AND 1 is non-zero, so branch taken)

g. add al,dl
jnc there NOT_TAKEN (al+dl produces a carry, a branch not taken)

h. add al,dl
js there NOT_TAKEN (MSB of al+dl is ‘0’, so branch not taken)

i. add al, 40h
jno there NOT_TAKEN (al + 40h produces an overflow, so branch not takend)

3. (3 pts) Register AL has an 8 bit value (b7b6b5b4b3b2b1b0). Use a single logical instruction to change
the contents of AL to (b700000b1b0). Bits B7, B1, B0 unchanged, other bits set to zero.

 And al, 83h

4. (3 pts) Register AL has an 8 bit value (b7b6b5b4b3b2b1b0). Use a single logical instruction to change
the contents of AL to (1b6b5b4b311b0). Bits B7, B2,B1, set to '1', other bits unchanged.

 Or al, 86h

5. (8 pts) Write a subroutine that will return the number of bytes in a string. The string is terminated by
a ’0’ byte (count DOES NOT INCLUDE the ’0’ byte), and the starting address of the string is passed to
the subroutine via the DS:SI register. The count should be returned as zero if the string is ’empty’ (first
byte is zero). The count should be returned in the AL register (maximum number of characters will be
255).

Strlen proc
 Xor ax,ax
Lp1: mov bl, [si]
 Cmp bl,0
 Jz exit
 Inc al
 Inc si
 Jmp lp1
Exit: ret
Strlen endp

6. (10 pts) For the following code:

 push ax
 push dx
 call suba
 …. ;; other instructions
 ….

Suba proc
 Enter 4,0
 …..
 …..
 leave
 ret
suba endp

Draw a stack picture that shows the state of the stack after the 'enter' instruction inside of suba. Draw the
stack diagram as being 16 bits wide. Show all know registers/values that are on the stack, and show the
position of BOTH the stack pointer and base pointer.

ax
dx

Return addr
Old bp

Local word 1
Local word 2

????
????

New BP

New SP (4 bytes local storage)

7. (8 pts) Write a subroutine that will return the maximum 16-bit SIGNED integer from an array of
integers. On subroutine entry, register SI will point to the start of the array (each element is 16 bits), and
register CX will have the number of integers in the array. The maximum value should be returned in the
AX register. An example call to this procedure is shown below:

 .data
myarray dw -45, 1000, -34, 1500, 20, 60
count equ 6 ; six elements in the array

 .code
 mov ax,@data
 mov ds,ax
 mov cx, count
 lea si, [myarray]
 call findmax
 …..
 …..

findmax proc
;;; will assume that array always has at least 1 element
 mov ax, 8000h ;; get most negative 16-bit value into ax
lp1: cmp ax, [si]
 jge skip
 mov ax, [si] ;; ax is less than [SI], get memory value
skip: lea si, [si+2] ;; increment pointer by 2 bytes
 loop lp1 ;; cx has count
 ret
findmax endp

8. (8 pts) Write a subroutine that will take the lower 4-bits in AL (value is between 0 and 15) and convert
it to its ASCII equivalent character representation (value 0 = '0' (30h), value 1 = '1' (31h), etc, value 15 =
'F' (46h). Use capital letters 'A' thru 'F' for values 10 thru 15. The ASCII character value should return in
AL. You DO NOT KNOW what the upper 4-bits of register AL contains upon entry to the subroutine.

Mysub proc
 And al, 0Fh ;; mask off upper 8 bits
 Cmp al, 09h
 Ja skip ;; jump if value A-F
 Add al, 30h ;; value is 0-9, add 30h
 Ret

Skip: add al, 37h ;; value is A-F, add 37h to get to 41h – 46h
 Ret
Mysub endp

