1. (5 pts) Convert the following number in single precision floating point format to its decimal value (no exponents allowed in the final decimal value).

Sign bit: 1 Exponent field: 01111110 Significand Field: 0100 00000000

Exponent = Exp. Field - 127 = 7Eh - 127 = 126 - 127 = -1Sign is negative, number = $-1.0100 * 2^{-1} = -0.101 = -(0.5+0.125) = -0.625$

2. (5 pts) Draw the waveform for sending an 8 bit value of 43h using NRZI encoding. Assume the initial value of the waveform signal is a low voltage.

initial value	D0 '1'	D1 '1'	D2 '0'	D3 '0'	D4 '0'	D5 '0'	D6 '1'	D7 '0'

43h = 01000011 Send LSB first, NRZI encoding

3. (5 pts) Draw the waveform for sending an 8 bit value of 43h using DATA STROBE encoding. Assume the initial values of both data and strobe are both low voltage. Show the signaling for the 8-data bits only (no framing bits such as start/stop)..

Data initial D0 D1 D2 D3 D4 D5 D6 D7 value **'**1' **'**1' **'**0' **'**0' **'**0' **'**0' '1' **'**0' Strobe initial value

43h = 01000011 Send LSB first

4. (4 pts) For each pair of items, circle the one that would more likely be found in high bandwidth bus:

multiplexed address/data	vs.	non-multiplexed address/data
limited swing voltage signalir	ng vs.	full swing (gnd to power rail) signaling
asynchronous data transfer	vs.	synchronous transfer
narrow data width	vs.	wide data width

5. (5 pts) In a peripheral bus, what can be used to limit common mode noise?

Differential data signaling is used to reject common noise.

6. (6 pts) Define latency and throughput.

Latency is the time from when the operation is started to when the operation is finished. Throughput is number of operations per unit time. For fixed bandwidth, if throughput is increased, then latency is increased.

7. (6 pts) What pair of lines must go to every device on a bus if a central arbitration scheme is used to support multiple bus mastering?.

Bus Grant and Bus Request

8. (6 pts) What three pieces of information are needed in a fixed disk to locate a piece of data?

Cylinder, track, sector

9. (5 pts) Convert the number -2.0 to single precision floating point format:

Sign bit: -1 Exponent field: 10000000 (8 bits) Significand field: 0000...00000 (23 bits)

-2.0 = -10.0 (binary) $= -1.0 * 2^{1}$ Exponent = 1 + 127 = 128 = 10000000Significand is all zeros because everything to the right of the decimal point is zero.

10. (4 pts) How do you compute the number of horizontal lines in a raster display?

Horizontal Sync/Vertical Sync

11. (4 pts) In the IEEE floating point format, what field do I add bits to if I want to extend the precision of a floating point number?

Significand

12. (5 pts) The USB signaling protocol is called a synchronous protocol but there is no clock signal in the cable. How does USB maintain data sychronization?

NRZI encoding ensures a transition for every '0' bit. Bit stuffing is used to ensure that there are enough transitions in the signal waveform within a fixed time period in order to maintain clock sychronization (for every six consecutive '1' bits, stuff in a '0' bit). 13. (20 pts) Write a subroutine that will count the number of WORDS in a string. A word is any set of ASCII characters separated by ONE OR MORE 'space' characters (a space character has the ASCII value of 20h). You can assume the strings only have letters or spaces in them. The string is terminated by a zero byte (00h) and the starting address of the string is passed in BX. Return the number of words in the string in register 'AX' (you can assume there is less than 65535 words in the string). Example: " A lazy person am I" has 5 words. The first letter of the string can be a space or the end of the string.

wdcnt	proc		
	xor	ax, ax	
lp1:	mov	cl,[bx]	;space loop
	cmp	cl, O	
	je	exit	
	inc	bx	
	cmp	cl, 20h	
	je	lp1	;loop while a space
	inc	ax	; found a letter, inc word cnt
lp2:	mov	cl,[bx]	;letter loop
	cmp	cl, O	
	je	exit	
	inc	bx	
	cmp	cl, 20h	
	jne	lp2	;loop while a letter
	jmp	lp1	
	jne jmp	1p2 1p1	;loop while a letter

exit:

ret

(20 pts) Write a subroutine called SIGNED_SATADD that will do a signed 8-bit saturated addition of the values passed in AH, AL with the result passed back in AL: AL = AH + AL (signed 8-bit saturating addition).

If an overflow occurs during the addition, then the number has to be clamped to the maximum negative or maximum positive 8 bit value. The jump instruction 'jo' (jump on overflow) may prove useful.

satadd	proc add al,ah jo dosat ret	;result in al
dosat:		
	test ah, 080h ie oper pos	; see if negative
	mov al, 80h ret	;saturate to max negative
oper_pos:	mov al, 07fh ret	;saturate to max positive
satadd	endp	

14.