
Cache Simulator

You are to write a cache memory simulator. Your cache simulator must be able to:

1. Handle any cache data size.
2. Handle any block blocks sizes which is a power of 2.
3. Be able to simulate direct mapped, or N–way set–associative caches (N is a power

of two)
4. Be able to simulate either write back or copy–back caches.
5. Be able to handle either an allocate or non–allocate policy on write miss.
6. Implement Least–recently–used block replacement .
7. Accept a parameter for memory access time (in clocks) and compute average

access time, hit/miss ratios for both read and write operations.
8. Be able to specify a victim buffer of K blocks (victim buffer is fully associative)

You can write in any computer language. You cannot work in groups. A sample of what
your cache program should output is shown below:

% cache –s 1 –b 4 –W –c –a 1 –m 3 < sample.din
size (kbytes) = 1
of lines = 256
bytes/line = 4
associativity = 1
write policy = Copyback
write allocate = Yes
mem penalty = 3
–––
accesses = 1000 [reads = 704 (70.40%) writes = 296 (29.60%)]
hits = 765 (76.50%) [reads = 559 (55.90%) writes = 206 (20.60%)]
misses = 235 (23.50%) [reads = 145 (14.50%) writes = 90 (9.00%)]
access time = 1.5270
Program options are:
cache {options}:
–s size cache size in K bytes (power of two)
–b size cache size in bytes (power of 2), assume each access is word
–a num cache associativity, 1 is direct mapped
–c copyback, normally write through
–W write allocate, normally not write allocate
–m num memory access time in clock cycles
-v number of victim buffer blocks
Cache access time is assumed to be 1 clock cycle
__ _________
The associated ZIP file with this project contains a ’cache’ binary you can use for sample
runs; this is my solution to the project. There some cache trace files (’*.din file
extension’) that you can use for test purposes. The format of the trace data files is show
below:._

2 20d Dinero input format ”din” is an ASCII file with
2 211 one LABEL and one ADDRESS per line. The rest of
0 1fc780 the line is ignored so that it can be used for
1 7fffccb0 comments.
2 213
2 217 LABEL = 0 read data
0 1fc77c 1 write data
1 7fffccac 2 instruction fetch
2 219 3 escape record (treated as unknown access type)
2 21d 4 escape record (causes cache flush)
0 1fc778
1 7fffcca8 0 <= ADDRESS <= ffffffff where the hexadecimal addresses
2 21f are NOT preceded by ”0x.”
2 223

The important thing to note about this data input file is that each line specifies a memory
access via address information and whether the access was read or write. It DOES NOT
contain the data for that memory access. The data bytes actually associated with the
access are not needed when determining hit/miss information for the cache; we just need
to know which LOCATION (address) is being accessed.

When simulating your cache, you will need to keep an integer array (cache_array) whose
size is equal to the number of blocks in the cache. This array will be used to store the tag
value currently associated with that block. The size of cache_array is the number of
blocks in the cache which is computed as:

of blocks = (cache_size * 1024)/(block_size).

where cache_size is the size of the cache in Kbytes. You can think of this linear array
being grouped into lines, where each line contains ’associativity’ number of blocks. The
number of lines is computed as:

#lines = # of blocks / associativity

Note that if associativity = 1, then #lines = # of blocks and we have a direct mapped
cache. Each entry in cache_array will contain the tag value for that block. Given an
address, we need to compute the index (or line number) and the tag value which
corresponds to that address and check this tag against the tag values stored in
cache_array at that line number. The index and tag value can be computed from the
address via:

index = (address / (block_size)) modulo #lines
tag = address / (block_size * # lines)

0: tag value

1: tag value

2: tag value

3: tag value

N-3: tag value

N-2: tag value

N-1: tag value

Line #

0

1

2

3

L-3

L-2

L-1

cache_array entries

Let number of Blocks = N

Let number of Lines = L

Direct Mapped (associativity =1)

of lines = # of blocks

0: tag value

1: tag value

2: tag value

3: tag value

N-3: tag value

N-2: tag value

N-1: tag value

Line #

0

1

2

3

L-3

L-2

L-1

cache_array entries

Let number of Blocks = N

Let number of Lines = L

Direct Mapped (associativity =1)

of lines = # of blocks

0: tag value

4: tag value

8: tag value

N-4: tag value

1: tag value

5: tag value

9: tag value

N-3: tag value

2: tag value

6: tag value

10: tag value

N-2: tag value

3: tag value

7: tag value

11: tag value

N-1: tag value

For 4-way set associative, # of lines = # of blocks/4Line #

0

1

2

3

L-2

L-1

0: tag value

4: tag value

8: tag value

N-4: tag value

1: tag value

5: tag value

9: tag value

N-3: tag value

2: tag value

6: tag value

10: tag value

N-2: tag value

3: tag value

7: tag value

11: tag value

N-1: tag value

For 4-way set associative, # of lines = # of blocks/4Line #

0

1

2

3

L-2

L-1

Initially, each cache array value should initialized to a ’–1’ value indicating that this
cache block is empty. To check for a hit given an address you should:

1. compute the tag corresponding to that address
2. compute the index (line number) corresponding to that address
3. Starting at array value = index * associativity, check the next ’associativity’

entries to see if the tag stored in the array is equal to the tag computed from the
address. If a match is found this indicates a hit, else it is a miss.

If a cache miss is found and associativity > 1, then you must choose a particular block to
replace. If one of the blocks is ’empty’ (tag = –1), then this block should be chosen. If all
blocks in a line have valid tags, then you must choose a block using Least–Recently–
Used replacement. The easiest way to do this is to keep a separate integer array
(’lru_count’) whose size is equal to the number of blocks in the cache. Initially, these
values should be ’0’. When checking all of the blocks in a line for a hit, if the block tag
value does NOT match the address tag value then the associated ’lru_count’ entry should
be incremented by one (this is a miss). If the block tag value DOES match the address tag
value, then the associated ’lru_count’ entry should be set back to zero (a hit, a zero value
indicates this block is the most–recently–used block in this cache line). When picking a
block in a particular line to replace, choose the block with the highest ’lru_count’ value –
this will be the ’oldest’ or least–recently–used block in that cache line.

You must also keep a separate array which tracks dirty bit values for each block in the
cache – this will be used when you are simulating a copyback policy.

The easiest way to compute average access time is to keep two counters – one for total
number of accesses and one for total number of clocks. Increment the accesses counter
for each address processed. Increment the clock counter by 1 for each word (4 bytes)
read/written to the cache; increment the clock counter by the memory penalty for each
word read/written to main memory. Divide the total number of accesses into the clock
counter for average word access time.

Your program output must match the output of my ’cache’ program fairly closely; it must
match the ’hit/miss’ information exactly for the direct mapped case (associativity = 1)
and for associativity > 1 when using LRU replacment. You do not have to match my
access time information exactly but it should be close.

There is another cache simulator program in the ’project’ directory called dinero. Read
the dinero. cat file for information on how to run the dinero program. You should be able
to match the hit/miss information produced by dinero as well. I am having trouble
matching the read miss information produced by dinero when a copyback/write–allocate
policy is specified – I will be interested to see what you are able to do. The following are
equivalent runs for my ’cache’ program and ’dinero’:

% cache –b 16 –s 16 –a 8 –c –W < tex.din

 % dinero –b16 –u16K –a8 –wc –Aw < tex.din

Both programs simulate a 16 Kbyte cache, block size = 16, 8–way set associative,
copyback with write allocate and use the ’tex.din’ file as the input trace file

