
1

4/17/01 BR 1

Computer Architecture Classifications 
(Flynn 1966)

• SISD - Single Instruction stream, Single Data stream
– classical uniprocessor

• SIMD - Single Instruction stream, Multiple Data streams
– Vector machines

• MISD - Multiple Instruction streams, Single Data Streams
– No good examples, not very useful

• MIMD - Multiple Instruction streams, Multiple Data 
Streams
– Most interesting, many examples

4/17/01 BR 2

SIMD (Vector Machines)
• Simple idea – apply the same operation to multiple sets of 

data
– called a Vector operation

mul v1, v2, v3            

(v1, v2, v3  are vector registers each contain N sets of data)

d(0)

d(1)

d(2)

d(3)

d(N-1)

V1

a(0)

a(1)

a(2)

a(3)

a(N-1)

b(0)

b(1)

b(2)

b(3)

b(N-1)

=
=

=

=

=

X

V2 V3

X

X

X

X

4/17/01 BR 3

Supercomputers

• The term ‘SuperComputer’ used to be applied to Vector 
machines
– Cray Research created the first supercomputer (CRAY-1) in 1976

– Cray Research was world leader for many years, Japan also strong
in traditional vector machines

– Cray Research was bought by Tera Corporation in late 90’s

• Modern ‘supercomputers’ are now multiprocessors where 
each processor has one or more ‘vector units’
– Instruction stream divided into scalar operations and vector 

operations

– Vector operations executed  by vector units – multiple vector units 
can execute multiple  vector operations in parallel

• SIMD support is now mainstream
– MMX, SSE, SSE2 instructions in X86 are SIMD instructions



2

4/17/01 BR 4

MMX Instructions: SIMD Integer Operations

Added eight 64 bit registers.  The 64 bit register can be viewed as 
containing 8 packed bytes, 4 packed words,  2 dwords, or 1 quad. 

First appeared on Pentium I

4/17/01 BR 5

SSE Instructions for P3: SIMD Floating Point 

New 128 bit registers are called XMM registers (XMM0 – XMM7)
Holds four 32-bit single precision floating point numbers

An instruction like ADDPS   xmm0, xmm1  will add the two 
registers together, computing the sums of the four numbers.

Easy to see speed advantage over previous instructions

4.0  (32 bits)

+

4.0  (32 bits) 3.5  (32 bits) -2.0  (32 bits)

2.3  (32 bits)1.7  (32 bits)2.0  (32 bits)-1.5 (32 bits)

0.3  (32 bits)5.2  (32 bits)6.0  (32 bits)2.5 (32 bits)

4/17/01 BR 6

SSE P3 SIMD Extensions

More than 70 instructions.  Arithmetic Operations supported:  
Addition, Subtraction, Mult, Division, Square Root, Maximum, 
Minimum.  Can operate on Floating point or Integer data.  



3

4/17/01 BR 7

Superscalar vs. VLIW

• The goal of both Superscalar and VLIW architectures is to 
execute more than one instruction per clock
– VLIW: Very Long Instruction Word

• Superscalar architectures allow any sequence of 
instructions
– Control logic dynamically schedules code stream on execution 

units, resolves all hazards

– Control is very complicated

• VLIW architectures have simpler control, principally rely 
on static scheduling
– Possible to write code sequences that produce incorrect results

– Compiler must generate code that is hazard free

– Performance directly tied to quality of compiler generated code

4/17/01 BR 8

Why Superscalar?  Why VLIW?

• Superscalar approaches are used when trying to support an 
older ISA with a large body of legacy code
– X86 ISA is a good example – Pentiums were first superscalar 

implementations of the X86 ISA

– Have to support legacy applications compiled back in early 80’s!

• VLIW approaches preferred for new ISAs
– Designers can choose which hazards to resolve via compiler, 

which hazards to resolve in hardware

• Legacy code streams from older ISAs can be handled by a 
VLIW architecture
– One approach is dynamic code interpretation/translation to VLIW 

code stream (IA-64, Pentium 4, Transmeta CPUs and even the 
Pentium 3 all use this approach)

4/17/01 BR 9

From www.tomshardware.com

Pentium III



4

4/17/01 BR 10
From www.tomshardware.com

Pentium IV

Native 
instruction set 
called IA-32.

4/17/01 BR 11

Pentium 3 vs. Pentium 4 Differences

• L1 cache 
– P3: 16KB instruction, 16KB data

– P4: 8KB instruction, 16KB data

• P3:  X86 instructions translated to pipeline micro-
operations dynamically by decoder logic
– translations are not cached, done every time X86 instruction is 

executed

• P4: X86 instructions also dynamically translated to micro-
operations
– translation cache holds translations so that X86 instructions do not 

have to be repeatedly translated

– should speed execution of tight loops

4/17/01 BR 12

Pentium 3 vs. Pentium 4 Differences

• P3: 10 pipeline stages, P4: 20 pipeline stages
– Finer grain pipeline means higher clock speed
– P4 can have up to 126 instructions “in-flight” including up to 48 

load and 24 store instructions
– Pipeline flushes expensive!!!!

• SIMD Floating point instructions improved quite a bit 
from P3 (SSE) to P4 (SSE2)

• SSE 128 bit registers can be viewed as these data types
– 4 single precision FP values (SSE)
– 2 double precision FP values (SSE2)
– 16 byte values (SSE2)
– 8 word values (SSE2)
– 4 double word values (SSE2)
– 1  128-bit integer value (SSE2)



5

4/17/01 BR 13

Pentium 4 Performance

• For X86 Legacy code, published benchmarks show that a 
P4 @ 1.4 Ghz is about the same as a P3 @ 1.1 Ghz
– Somewhat puzzling since the execution trace cache of the P4 

should help with execution of X86 instructions

– Other factors must be involved – L1 cache size? Pipeline flush cost 
for X86 instructions? Micro Operation structure?

• P4 clock speeds projected to ramp up to 2.0 Ghz by 3rd

quarter 2001

• Applications optimized for SSE2 instructions in P4 are 
1.5X to 2X faster than P3 (especially double precision 
floating point)

4/17/01 BR 14

Transmeta Corp ‘Crusoe’ Processor

• VLIW Processor for executing x86 code

• Uses a dynamic code translation mechanism to translate 
segments of X86 code into VLIW code

• Translation cache allows translation to be done once

• Claim is that Crusoe architecture is simpler than
Superscalar X86 implementation
– Less transistors, smaller die, cheaper die

– Less power

– Also has additional features for power consumption

• Aimed at mobile computing

4/17/01 BR 15

Cruosoe Execution Units

A ‘molecule’ is a VLIW instruction.  Has 64 registers.



6

4/17/01 BR 16

Die Sizes

Smaller Dies for Crusoe processors, more on-chip cache.

4/17/01 BR 17

Die Temperature

Cruosoe uses less 
power.

4/17/01 BR 18

Code 
Translation 
Mechanism



7

4/17/01 BR 19

Comments on ‘Code Morphing’

• Code morphing is just translation of X86 code to native 
Crusoe code

• Each version of the Crusoe chip needs a different version 
of the translation code

• Crusoe chip is essentially running a very efficient X86 
emulator.  The design of the Crusoe chip was made with 
emulation as the end goal, so emulation is very efficient.
– X86 emulators exist for other architectures (i.e, Macintosh 

PowerPCs, but as an afterthought and they are inefficient).

4/17/01 BR 20

Translation Cache

• The code morphing software (emulator) dynamically 
translates X86 code to Crusoe Code

• Uses a translation cache to exploit the fact that once a loop 
has been translated, will be executed many times so 
translation overhead is only once, during first execution of 
loop
– Some code (a little) has either large loops or only a few loops and 

so overhead of translation mechanism impacts performance

4/17/01 BR 21

Translation

First pass is simple translation



8

4/17/01 BR 22

Translation (continued)

2nd pass, optimizations.  Common sub-expression 
elimination (read stack only once).  Move 
operations when condition codes not needed 
(only last CC actually needed).

4/17/01 BR 23

Translation (continued)

Group into VLIW instructions for scheduling.

4/17/01 BR 24

Shadow Registers, Commit/Rollback

Exceptions (i.e. divide by zero) can cause problems since 
code is aggressively restructured and operations occur out 
of order.

• Architecture has a set of shadow registers. Before 
executing a block of code in which an exception can occur, 
copy machine state to exception registers and aggressively 
translate/execute code

• If code executes with no exception, ‘commit’ the code 
block and copy current registers to shadow registers.



9

4/17/01 BR 25

Shadow Registers, Commit/Rollback

• If exception occurs, use Shadow registers to restore 
processor state to previous stable state

• Translate code to version that can handle exception when it 
occurs, re-execute code

• To handle load/stores, there is also a ‘Shadow’ memory 
that handles load/store operations in a similar manner

• Commit/Rollback with Shadow Registers

4/17/01 BR 26

Another Example
Comments on 
translation

a. No jmp
b. Reg. Renamed
c. Out-of-order 
execution
d.Both code branches 
executed. Select 
instruction used to 
choose result.

4/17/01 BR 27

Additional Power Savings

• Translation software (Code morpher) is actually a psuedo
operating system

• Code morphing dynamically adjusts both clock frequency AND 
power supply to adjust to execution speed needs
– power varies linearly with clock frequency

– power varies with square of voltage

– lowering both frequency and power results in cubic power savings

• Most other processors only vary clock frequency.

• Claim power savings on typical applications of 30% (other 
processors have 10% savings).



10

4/17/01 BR 28

Adjusting power to meet user demands

• How do you know if you are running code fast enough?

• Real time software (i.e. DVD player) is easy – just run it 
fast enough to keep up with streaming data

• User interface software – a bit more heuristic, store 
profiles to allow user to help specify if performance ‘is 
good enough’.

4/17/01 BR 29

TMS5400

Integer pipeline is 7 stage, FP pipeline is 10 stage.

4/17/01 BR 30

TMS5400 vs TMS 3200


