Computer Architecture Classifications
(Flynn 1966)

¢ SISD - Single Instruction stream, Single Data stream
— classical uniprocessor
e SIMD - Single Instruction stream, Multiple Data streams
— Vector machines
« MISD - Multiple Instruction streams, Single Data Streams
— No good examples, not very useful
* MIMD - Multiple Instruction streams, Multiple Data
Streams
— Most interesting, many examples

4/17/01 BR

SIMD (Vector Machines)

« Simple idea— apply the same operation to multiple sets of
data
— called aVector operation

mul v1, v2, v3

(v, v2, v3 are vector registers each contain N sets of data)

d(0) = a(0) X | b(0)

d(1) = a1) X i b(1)

d = a?2) X i b2

d(3) = a(3) X i b

[[[

H H H
[dN-) | = [anN-D] x [bN-D)]

4/17/01 Vl V2 BR V3

Supercomputers

* Theterm ‘ SuperComputer’ used to be applied to V ector
machines
— Cray Research created the first supercomputer (CRAY-1) in 1976

— Cray Research was world leader for many years, Jgpan aso strong
in traditional vector machines

— Cray Research was bought by Tera Corporation in late 90's
* Modern ‘ supercomputers are now multiprocessors where
each processor has one or more ‘ vector units
— Instruction stream divided into scalar operations and vector
operations
— Vector operations executed by vector units —multiple vector units
can executemultiple vector operations in parallel
« SIMD support is now mainstream
— MMX, SSE, SSE2 instructions in X86 are SIMD instructions

4/17/01 BR

MMX Ingtructions: SIMD Integer Operations

Added eight 64 bit registers. The 64 bit register can be viewed as
containing 8 packed bytes, 4 packed words, 2 dwords, or 1 quad.

63

MM7 @ s a4 wm @wm um w15 a7 o

I N N

Packad word (1116 t5)
e

MMS y . o wis .
VA [I I []

MM3. Packad doublowords (2632 i)
&

M2 \ [|

MM1 Quadword (64 bits)
&

MMO ‘ ‘

Figuro 2. MMX'™ Data Types.
3006044

Figure 8-1. MMX™ Register Set FI rst aopeared on Pentium |

4/17/01 BR 4

SSE Instructions for P3: SIMD Floating Point

New 128 hit registers are called XMM registers (XMM0 — XMM7)
Holds four 32-hit single precision floating point numbers

An instruction like ADDPS xmmO, xmm1 will add the two
registers together, computing the sums of the four numbers.

Easy to see speed advantage over previous instructions

‘ 4.0 (32bits) ‘ 4.0 (32bits) ‘ 35 (32bits) ‘ -2.0 (32bits) ‘
+ ‘ -1.5 (32 bits) ‘ 2.0 (32bits) ‘ 1.7 (32bits) ‘ 2.3 (32bits) ‘
2.5(32bits) ‘ 6.0 (32 bits) ‘ 5.2 (32 bits) ‘ 0.3 (32 bits) ‘

4/17/01 BR 5

SSE P3 SIMD Extensions

[xien | xaespm | x3asp | xasp |
[vlem | vdsp [vien | vdem |
oP oP oP oP

[xtop v (sP)] x20p v21sP] X300 Y3 (5P)| Xd0p va (5P

Figure 9-5. Packed Operations

More than 70 instructions. Arithmetic Operations supported:
Addition, Subtraction, Mult, Division, Square Root, Maximum,
Minimum. Can operate on Floating point or Integer data.

4/17/01 BR 6

Superscalar vs. VLIW

* Thegoa of both Superscalar and VLIW architectures isto
execute more than one instruction per clock
— VLIW: Very Long Instruction Word
e Superscalar architectures allow any sequence of
instructions
— Control logic dynamically schedules code stream on execution
units, resolves al hazards
— Control is very complicated
e VLIW architectures have simpler control, principally rely
on static scheduling
— Possible to write code sequences that produce incorrect results
— Compiler must generate code that is hazard free
— Performance directly tied to quality of compiler generated code

4/17/01 BR 7

Why Superscalar? Why VLIW?

« Superscalar approaches are used when trying to support an
older ISA with alarge body of legacy code
— X861SA isagood example — Pentiums were first superscalar
implementations of the X86 ISA
— Have to support legacy applications compiled back in early 80's!
e VLIW approaches preferred for new ISAs
— Designers can choose which hazards to resolve via compiler,
which hazards to resolve in hardware
« Legacy code streams from older I1SAs can be handled by a
VLIW architecture

— One approach is dynamic code interpretation/translation to VLIW
code stream (IA-64, Pentium 4, Transmeta CPUs and even the
Pentium 3 all use this approach)

4/17/01 BR 8

Pentium(r) lll Processor Architectural Block Diagram

Dynamic Branch
[Predictor: 512 entrie

System Bus

D Instruction Cache 16 Kbyte, -way
32entry TLE

Pentium 111

Fetch/Decade
|__contral

x parallel Instruction Dec

1 34
Integer/FP Register
Rename & Allocator I

Reservation Station (20 Entries)

Static Branch
Prodictor

Micro Code ROM |/

Architectural

Sequencer Register File

Memory Order Buffer
12 entry store, 16 entry load

140 entries)

Data Cache 16 KByte, 4-way.
72 entry TLB

From www.tomshardware.com

4/17/01 BR 9

Pentium(r) 4 Processor Architectural Block Diagram

Pentium IV
Wicro Code
o/
Micro 1
ntnion Native
Sequencer . .
instruction set
e caled IA-32.
RN ot e oy
v [3
S EERATR
By Netw:
U1 Dota Cocho 8 KBy, 4y
it
From www.tomshardware.com
4/17/01 BR 10

Pentium 3 vs. Pentium 4 Differences

e L1cache
— P3: 16K B instruction, 16K B data
— P4: 8KB instruction, 16K B data
« P3: X86 ingructions translated to pipeline micro-
operations dynamically by decoder logic
— translations are not cached, done every time X86 instruction is
executed
e P4: X86 ingtructions also dynamically translated to micro-
operations
— translation cache holds translations so that X86 instructions do not
have to be repeatedly translated
— should speed execution of tight loops

4/17/01 BR 11

Pentium 3 vs. Pentium 4 Differences

« P3: 10 pipeline stages, P4: 20 pipeline stages
— Finer grain pipeline means higher clock speed
— P4 can have up to 126 instructions“in-flight” including up to 48
load and 24 store instructions
— Pipeline flushes expensive!!!!
» SIMD Floating point instructions improved quite a bit
from P3 (SSE) to P4 (SSE2)
e SSE 128 hit registers can be viewed as these data types
— 4single precision FP values (SSE)
— 2double precision FP values (SSE2)
— 16 byte values (SSE2)
— 8word values (SSE2)
— 4 double word values (SSE2)
— 1 128-bit integer value (SSE2)

4/17/01 BR 12

Pentium 4 Performance

« For X86 Legacy code, published benchmarks show that a
P4 @ 1.4 Ghz is about the sameasaP3 @ 1.1 Ghz

— Somewhat puzzling since the execution trace cache of the P4
should help with execution of X86 instructions

— Other factors must be involved — L1 cache size? Pipeline flush cost
for X86 instructions? Micro Operation structure?
» P4 clock speeds projected to ramp up to 2.0 Ghz by 31
quarter 2001
« Applications optimized for SSE2 instructions in P4 are
1.5X to 2X faster than P3 (especially double precision
floating point)

4/17/01 BR 13

Transmeta Corp ‘Crusoe Processor

e VLIW Processor for executing x86 code

« Usesadynamic code trandation mechanism to trandate
segments of X86 code into VLIW code

» Trandation cache allows translation to be done once

¢ Claim isthat Crusoe architecture is simpler than
Superscalar X86 implementation
— Lesstransistors, smaler die, cheaper die
— Less power
— Also has additional features for power consumption
¢ Aimed at mobile computing

4/17/01 BR 14

Cruosoe Execution Units

128-bit molecule
FADD ‘ ADD ‘ LD | BRCC
Floating-Point Integer Load/Store Branch
Unic ALU #0 Unic Unit

Figure 1. A molecule can contain up to four atoms, which are executed in parallel.

A ‘molecule’ isaVLIW instruction. Has 64 registers.

4/17/01 BR 15

Die Sizes

Mobile PII Mobile PII Mobile PIII TM3120 TM5400
Process .25m .25m shrink. 18m .22m .18m
On-chip L1 Cache 32KB 32KB 32KB 96KB 128KB
On-chip L2 Cache 0 256KB 256KB 0 256KB
Die Size 130mm? 180mm? 106mm? 77mm? 73mm?
Table 1. The Code Morphing software simplifies chip hardware.
Smaller Diesfor Crusoe processors, more on-chip cache.
4/17/01 BR 16
Die Temperature
Cruosoe uses less
power.
[0 |
w00
700
P
500
o
500
[eos |
4/17/01 BR 17
Code
Trandation Code Morphing
. Software
Mechanism

VLIW engine

Operating
System

Code Morphing
ftware

Figure 5. The Code Morphing software mediates between x86 software and the Crusoe processor.
4/17/01 BR

18

Comments on ‘ Code Morphing’

¢ Code morphing isjust translation of X86 code to native
Crusoe code

« Each version of the Crusoe chip needs a different version
of the trandation code

e Crusoe chip is essentially running a very efficient X86
emulator. The design of the Crusoe chip was made with
emulation as the end goal, so emulation is very efficient.

— X86 emulators exist for other architectures (i.e, Macintosh
PowerPCs, but as an afterthought and they are inefficient).

4/17/01 BR 19

Translation Cache

« The code morphing software (emulator) dynamically
translates X86 code to Crusoe Code

« Usesatranslation cache to exploit the fact that once aloop
has been trandated, will be executed many times so
translation overhead is only once, during first execution of
loop

— Some code (alittle) has either large loops or only afew loops and
so overhead of translation mechanism impacts performance

4/17/01 BR 20
Translation

A. addl %eax, (%esp) // load data from stack, add to %eax

B. addl %ebx, (esp) // ditto, for tebx

C. movl %esi, (ebp) // load %esi from memory

D. subl %ecx,5 // subtract 5 from %ecx register

1d %730, [$esp] // load from stack, into temporary

add.c %eax, %eax, $r30 // add to %eax, set condition codes.

1d %131, [$esp]

add.c %ebx, sebx, $r3l1
14 %esi, [%ebp]

sub.c %ecx,%ecx,5

First pass is simple translation

4/17/01 BR 21

Translation (continued)

1d %730, [$esp] // load from stack, into temporary
add.c %eax, %eax, $r30 // add to %eax, set condition codes.
1d %131, [sesp]

add.c %ebx, ¥ebx, $r31

1d %esi, [¥ebp]

sub.c %ecx,%ecx,5

1 2 pass, optimizations. Common sub-expression
elimination (read stack only once). Move
operations when condition codes not needed
(only last CC actually needed).

1d %r30, [%esp] // load from stack only once

add %eax, ¥eax, $r30

add %ebx, $ebx, $r30 // reuse data loaded earlier

1d sesi, [%ebp]

sub.c %ecx,%ecx,5 // only this last condition code needed
4/17/01 BR 22

Translation (continued)

1d %r30, [%esp] // load from stack only once

add %eax, yeax, $r30

add %ebx, ¥ebx, $r30 // reuse data loaded earlier

1d %esi, [¥ebp]

sub.c %ecx,¥ecx,5 // only this last condition code needed

1 Group into VLIW ingtructions for scheduling.

1. 1d %r30, [%esp]; sub.c %ecx,%ecx,5
2. 1d %esi, [%ebpl; add %eax, $eax, %r30; add %ebx, ¥ebx, $r30
4/17/01 BR 23

Shadow Registers, Commit/Rollback

Exceptions (i.e. divide by zero) can cause problems since
code is aggressively restructured and operations occur out
of order.

 Architecture has a set of shadow registers. Before
executing a block of code in which an exception can occur,
copy machine state to exception registers and aggressively
translate/execute code

« If code executes with no exception, ‘commit’ the code
block and copy current registers to shadow registers.

4/17/01 BR 24

Shadow Registers, Commit/Rollback

« If exception occurs, use Shadow registers to restore
processor state to previous stable state

« Trandate code to version that can handle exception when it

occurs, re-execute code

¢ Tohandle load/stores, there is also a‘* Shadow’ memory
that handles load/store operations in a similar manner

¢ Commit/Rollback with Shadow Registers

4/17/01 BR

25
1. movl $ecx, $0x3
L T resor Another Example
3077 1b11: mova vedx, 0x2£c (vebp) Comments on
4 movil $eax, 0x304 ($ebp) H
s o1 vesi,s0x0 translation
e: sty vedx, veax)
7 movl 0x40 (¥esp, 1) , $0x0 a NOJmp
sl S1e skip1
9. movl $esi, $0x1
220 ewipa. nova eS2i@25.4, aees D-Reg Renamed
= oo veaieny ¢. Out-of-order
13. 1 sk 2 1
1a. Xorl Yean veax execution
15. skipz: movl Sesi.0%308 (3=bp)
le: movl Seqi, 0x300 (¥obp) d.Both code branches
17 mov1 0%7c (esp, 1), Boax
18l cmpl Seoi, el executed. Select
1s! o1 teax. $0x0) .
0. e emiel instryction used to
- = y)
T00Se result.
1 addi %r39, tebp, 0x2fc
2 addi 5138, $ebp, 0x304
3 1d %edx, [$r39]; add %r27, add %r26,%r38,-4
4. 1d %r31, (%r38]; add add %r36, %esp, 0x40
5 1ldp %esi, [%r27]; add sub.c %null, $edx, $r3l
6 ldp sedi, [$r26] ; sel
7 stam 0, [%r36]; sel #1,%r24,%r35,0; add %r25,%esp,0x7c
8 stam %r32, ($r33]; add %ecx,0,3; sub.c %$null, $esi, %edi
9 st %124, [%r25]; or %eax,0,0; brece #1t,<exit2>
10. br <exitls>
6

Additional Power Savings

Trandation software (Code morpher) is actually a psuedo
operating system

Code morphing dynamically adjusts both clock frequency AND

power supply to adjust to execution speed needs

— power varies linearly with clock frequency

— power varies with square of voltage

— lowering both frequency and power results in cubic power savings
Most other processors only vary clock frequency.
Claim power savings on typical applications of 30% (other
processors have 10% savings).

4/17/01 BR

Adjusting power to meet user demands

» How do you know if you are running code fast enough?

* Red time software (i.e. DVD player) iseasy —just run it
fast enough to keep up with streaming data

o User interface software — a bit more heuristic, store
profilesto allow user to help specify if performance ‘is

good enough’.
4/17/01 BR 28
TMS5400
FIGURE 1. Crusoe Processor Block Diagram - Model TM5400
L1 Instruction Cache Unified TLB
256 ent
saysatassosaive | | 4wy st ssoiame o] CORSORAM |
b)
SDR SDRAM
COPU Core [*] Controller [*7*
Inte it
Fosingpontur || merace
Multimedia Instructions
i PCI Controller
&
[x] nn; fa:na L2 »;4; flcho e] soutnbriage [*
Interface
16-way set associative 4-way set associative
Integer pipelineis 7 stage, FP pipeline is 10 stage.
4/17/01 BR 29
TMS5400 vs TMS 3200
Frequency Range 333-4000MHz 500-700MHz
L1 Cache P6EE 128KE
L2 Cache 250KE
Main Memory SDRAM (66 to 1330Hz) | DDR-SDRAM (100 to 1660MHz)
Upgrade Metmory SDRAM (66 to 133MHZ)
HMorth Bridge Integrated Integrated
Package 4TABGA 474 BGA
Sample How Now
Production How How
4/17/01 BR 30

10

