
1

3/27/01 BR 1

Cache, Virtual Memory Architectures
Modern Processors

• Will look at Cache, Virtual memory architecture for the
IA-64

• IA-64 ISA is successor to the Merced (Pentium 4), which
was the successor to the Pentium 3/2/1.
– 64-bit architecture, all registers 64-bits wide

– 128 General Registers, 128 Floating Point Registers

– G0-G31 are global registers, G32-G127 are part of the “Register
Stack” where a dynamic number of them can be allocated as part
of procedure call/return and be visible to only that procedure
(similar to Sparc register windows).

– Superscalar, maximum issue of 6 instructions per clock

– Supports both speculative branching and speculative loading

• Itanium is the first implementation of the IA-64 ISA.

3/27/01 BR 2

Itanium Block Diagram

2

3/27/01 BR 3

Register Set (Integer RF has 8 read ports, 6 Write ports)

3/27/01 BR 4

Itanium Caches
• L1 Data Cache (128 bits in one read)

– 16Kbytes, 4-way set associative, write through, no write allocate with 32-
byte lines. “No Write Allocate” means that on a write miss, the missed
block is NOT loaded into the cache.

– Can sustain 2 loads, 2 stores, or 1 load and 1 store per clock (dual ported
cache!!! Needed for superscalar operation!).

– Integer mem op hits in L1 have a 2 cycle latency to most operations.
Floating point mem ops bypass this cache.

• L1 Instruction Cache
– 16 Kbytes, 4-way set associative with 32-byte lines

– 1 Read = 128 bits = 3 instruction ‘bundle’ + 2 parity bits (1 inst = 41 bits)

• L2 Unified Cache
– 96Kbyte, 6 way set associative, write back, write allocate (on write miss,

load missed block into cache), 64 byte line.

– Two ports, can sustain two memory ops/clock or one line fill.

– Integer mem op hits have 6 cycle latency, Floating point mem op hits have
9 cycle latency.

3

3/27/01 BR 5

Itanium Caches (continued)

• L3 Unified Cache (off chip, on package)
– Size, organization varies with package. First versions have 4 MB.
– Integer mem op hits have 21 cycle latency, Floating point 24

cycles.

• Latency is high even for hits!!!!
– Architecture has an Advanced Load Address Table (ALAT) that

supports speculative loads. Helps compiler schedule loads to work
around latencies.

– Also has explicit instructions for use by the compiler to move
blocks between cache hierarchies.

– Will discuss both of these later

• L1 cache has parity bit, L2/L3 caches have 1 bit error
correction, 2 bit error detection.

• All caches are PHYSICAL caches, virtual to physical
translation takes place before cache access.

3/27/01 BR 6

IA-64 Virtual Memory
• Address are 64 bits

– Upper 3 bits (Virtual Region Number) use to select 1 of 8 Region
Registers (RR) that contains a Region ID (RID).

– The contents of Region Registers managed by OS. Typically, one
region register is constant and is assigned to the OS, while the
other 7 are owned by the current task.

– A Region Register is 24 bits.

– RID gives 224 address spaces (16 Million), each space 261 bytes
in size (221 terabytes).

0606163

Virtual Page Number (VPN)
3

RR 0
RR 1

RR 7
023

Virtual address is RID + VPN

61- offset bits

24

RID

VRN offset

4

3/27/01 BR 7

Virtual to Physical Translation

3/27/01 BR 8

More on Regions

• One region usually always reserved for OS

• Other 7 regions for a task, usually split into:
– text (code)

– stack

– heap

– static data

– ????

• One task will basically see a flat 64-bit address space.

5

3/27/01 BR 9

Address Translation

• TLBs for both Data and Instruction
• TLB tag contains both RID and VPN and is matched

against incoming RID and VPN
– The TLB can contain entries from different Regions (different

RIDs).
– If the OS changes the contents of a RID register, then all TLB

entries that correspond to that RR must be flushed.

• Itanium (1st implementation of IA-64) has L1 DTLB (data
TLB) and L2 DTLB
– L1 DTLB has 32 entries, fully associative
– L2 DTLB has 96 entries, fully associative (L2 DLTB needed

because floating point mem accesses bypass L1 cache).

• ITLB (instruction TLB) has 64 entries, fully associative
• Page size configurable as 4K, 8K, 16K, 256K, 1M, 4M,

16M, 64M, and 256M.

3/27/01 BR 10

Page Pinning
• Some pages need to be ‘pinned’, i.e, never swapped out to

disk
– interrupt vector pages, root page tables

• Each TLB contains 8 Translation Registers (TRs) that are
managed by software independent of the normal cache
entries (TCs)
– The page referenced by a TR is essentially pinned in memory – it

will only be invalidated if the software managing the TR purges
the TR contents

6

3/27/01 BR 11

Virtual Hash Page Table (VHPT)

• The hardware page table entry lookup mechanism on the
IA-64 is called the Virtual Hash Page Table (VHPT)
– The page table is mapped into virtual memory because the size of

the page table would be too large to keep in physical memory

– Use of the VHPT search mechanism on a TLB miss is optional, the
OS can disable the VHPT and do the search (page table walk)
entirely in software

• The VHPT search mechanism can be configured as
– a linear page table (one PTE per VPN)

– as a hashed page table (multiple VPNs mapped to same PTE,
collisions resolved in software via collision chain)

3/27/01 BR 12

Itanium Virtual Memory Implementation

• Implements 54 bit Virtual address (3 bit VRN, 51 VPN)

• Implements 44 bit physical address

• Assume a page size of 16 Kbytes (214). How many Virtual
Pages?
– Ignore VRN, specifies Region ID. For linear page table searching

by VHPT walker, RID is ignored (linear table per region)

– 251 / 214 = 237 PTEs. For linear table format, each PTE is 8 bytes,
so page table size = 240, or 1 Terabyte!!??!!

• Obviously, can’t reserve 1 Terabyte for the page table and
there is no need to statically allocate the page table.

• The OS can build the page table dynamically.

7

3/27/01 BR 13

Building a Page Table dynamically

• The entire page table is kept in Virtual memory

• When task is initialized, storage requirements for code,
static data, stack are known.
– Pages for PTEs for this storage is allocated by OS in Virtual

Memory.

– Program requests for dynamic data storage goes through OS
(malloc, sbrk, etc.), so page table information is built for these
pages as they are allocated.

• Making PTE’s stored in Virtual Memory means that pages
of PTEs can be swapped just like data/code pages.

3/27/01 BR 14

Invalid Address Protection

• What happens if a program generates an erroneous address
for which there is no PTE?
– Call this address BAD_VMADDR

• VHPT calculates the address of the PTE for
BAD_VMADDR based upon either the linear mapping or
hash function
– Call this address PTEBAD_VMADDR

• Since PTEBAD_VMADDR is virtual, goes through the
TLB
– generates a MISS in the TLB
– When a TLB MISS for a PTE is generated by the VHPT, this

MISS is handed to the OS, which then detects the invalid virtual
address.

8

3/27/01 BR 15

TLB Search

3/27/01 BR 16

Some Fault Descriptions

• VHPT Instruction/Data Fault.
– Raised when there is an additional TLB miss when the VHPT

walker attempts to access the VHPT. Typically used to construct
leaf table mappings for linear page table configurations.

• Instruction/Data TLB Miss. Raised when
– cannot locate the required VHPT entry

– VHPT walker is not implemented

– reference is to a non-supported VHPT preferred page size

– ill-formed PTE (reserved fields used, etc.)

• Miss handlers are essentially software walkers

• The VHPT walker can be disabled. Is only a performance
enhancing mechanism for locating PTEs after a TLB miss.

9

3/27/01 BR 17

A Numerical Example

Assume a 64K byte page size (2 16) with a VMA size of 48 bits
without the region bits.

What is the address of the PTE for the address given that each PTE
is 8 bytes using a linear mapping?

Let VMA = 0x 07FF1A002000

Offset = 0x2000 (lower 16 bits).

VPN = 0x07FFF1A00

VMA of PTE = VPN * 8 = 0x0000 07FFF1A00 * 23 =
= 0x0000FFF8D000

3/27/01 BR 18

PTE attributes defines Cache Policy For Page

Basically can mark as cacheable or uncacheable.

‘Coherence’ refers to multi-processor cache coherence.

Coalescing means delaying writes so that they can be written as a
block of writes to consecutive locations for higher performance.
This means that the writes can be performed out of order.

10

3/27/01 BR 19

Deferred Speculative Exceptions

• The IA-64 supports speculative memory load operations
– Because of latencies, loads can be moved by compiler many instructions

ahead of where data is used
– If moved before a STORE, the load become data speculative because the

store may alter the memory value
– If moved before a BRANCH, the load becomes control speculative

because the branch may not be executed

• What happens if an exception (like a page fault) is raised for control
speculative loads?

– Typically deferred – wait until we know if it is needed
– A bit called the NaT (Not a Thing) bit is used with each General Register

to track if this is register is part of a deferred speculative exception

• The NaTPage policy causes all control speculative loads to this page to
be deferred (i.e aborted)

– Will discuss speculative loading in more detail later.

3/27/01 BR 20

Cache Support for Streaming Data Operations

Special cache instructions allow support for two views of data:

a. Data with both temporal and spatial locality

b. Data with spatial locality only (streaming data)

Both types of data can exist in cache at the same time.

11

3/27/01 BR 21

Locality Hints, Implicit Prefetching

The above hints are for data references. Instructions are
assumed Temporal, Level 1.

Future implementations of the IA-64 may have separate caches
for streaming and non-streaming data. Data is allocated
between the caches according to the hints (see next page).

The IA-64 implements implicit prefetching for loads/stores that
use a post-increment addressing mode (ld r3, [r4++]). The
cache block of the post-incremented address is automatically
loaded into cache.

3/27/01 BR 22

Locality Hints affect Data distribution between
temporal/non-temporal caches

Locality hints allow compiler to designate which addresses contain
streaming data. Streaming caches obviously will have a different block
replacement strategy than temporal cache.

The Itanium does NOT implement a separate cache for streaming data,
so locality hints are ignored.

12

3/27/01 BR 23

Speculative Loads

• Data Speculative Loads – load is moved ahead of an
ambiguous Store
– An ambiguous Store is one in which compiler does not know the

store address:

Want to move load from here
to up here because r2 value is
used by this subtraction.

This store is a problem. If
memory areas of [r29] and
[r3] overlap, store must be
executed first.

3/27/01 BR 24

Allowing Data Speculative Loading
• An advanced load instruction (ld.a) is used for data

speculative loading
– The register number used in the load and load address is stored in

an Advanced Load Address Table (ALAT).

• Before the result of the load can be used by a non-
speculative instruction, the check instruction (chk.a) must
be used to see if load value is valid
– Check must use same register number, simply checks to see if the

ALAT entry is still present. If NOT PRESENT, then jump to
compiler-generated recovery code that re-executes the load and
dependent instructions

• An ALAT table entry is removed if
– there is a STORE that overlaps an ALAT entry
– An ALAT entry has been replaced by another entry due to the

same register or cache replacement choice
– The OS or other hardware conditions invalidate the entry

13

3/27/01 BR 25

Itanium ALAT

• Is a 32 entry, two-way set associative cache

• The “tag” is the register number

• The “data” is the address and the size of the load (byte, 2-
byte, 4-byte, 8-byte).

• A miss causes a 10-cycle pipeline flush in addition to the
recovery code
– Recovery code on Itanium is an OS trap, requires several status

register reads

– Overhead is estimated at 50+ cycles plus recovery code execution

– Miss penalty is very steep.

3/27/01 BR 26

Predicated Execution (Guarded Execution)

• Branches are obviously difficult to deal with in superscalar
architectures

• Would like to reduce number of branches. One way is via
instructions that support predicated execution (guarded
execution)

(p1) add r1=r2,r3

Predicate register .
Each predicate
register is 1-bit

This add is executed if P1 = ‘1’, else it is
a NOP.

14

3/27/01 BR 27

Converting an If statement to Predicated Execution

The cmp.ne instruction sets the predicate registers p1, p0
based on the comparison of r4 to ‘0’.

P1 register will have ‘1’ if comparison is true, P0 will be
complement of P1.

Note that the compiler is free to place additional independent
instructions between the ‘cmp.ne’ and subsequent ‘add’,
‘ld8’ instructions.

3/27/01 BR 28

Pros/Cons of Predicated Execution

• Cons
– Even if predicate is false, instructions are executed as NOPs

– For If-else code, both the TRUE and FALSE instructions are executed
if (condition) {

/* true code */
} else {

/* false code */
}

• Pros
– For short sequences of predicated instructions, can be faster than using

branches since the instructions are in the pipeline anyway and it is more
efficient to go ahead and execute them as NOPs since a branch mis-
prediction can be expensive

• It is the compiler’s decision whether to use branches or predicated
instructions

15

3/27/01 BR 29

Branch Prediction

• IA-64 has many ways to reduce branch mis-prediction
• Branch prediction hints can be given by compiler

– within the branch itself
– via a separate instruction (branch hint instruction)

• For branches, hints added by compiler are:
– Prediction method: Static Not-Taken, Static Taken, Dynamic-Not-

Taken (use dynamic predictor, 1st guess is not-taken), Dynamic-
Taken

– Sequential Prefetch hint of FEW or MANY. If FEW, then only
prefetch a few instruction cache lines. If MANY, then prefetch
more.

– Predictor de-allocation hint of NONE or CLEAR. If NONE, then
remember branch history and branch prediction of this branch. If
CLEAR, then free all branch prediction resources for this branch
after execution (guess that you will not execute this branch again).

3/27/01 BR 30

Branch Prediction Instructions

• Explicit instruction used to provide early information about
future branches
– location of branch

– target address of branch

– branch importance (a hardware hint as to how much predication
hardware should be used on branch). Can speed up tight loops.

– Branch hints. Can hint that branch is static taken, should use
dynamic hardware, or is a special branch type like a counting loop
branch or exit branch.

16

3/27/01 BR 31

Special Branches

• In addition to the normal conditional branch instructions,
there are special branch instructions that are useful for
common structures and which can eliminate misprediction

• Counted loop Branch (cloop) – uses a special register for
counting executing of a loop. No mispredictions for this
branch.

• While.Top, While.Exit loop branches for while loops with
tests at top of loop and end of loop
– Does not affect branch prediction
– Works with hardware support for software pipelining of loops –

may discuss this later in the course.

