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Overflow logic depends on whether doing an addition or subtraction:
if (addition) overflow = (A and B and (not Nf ) ) or
((not A) and (not B) and Nf)
i.e. For addition, if sign bitsof operands are the same, but the result
sign bit is different, then OVERFLOW has occurred

Overflow Logic ( cont).
What about subtraction? (A —B)

If operands have different sign bits, and the result sign bit is
DIFFERENT from the sign of the A operand, then overflow!

If (subtraction) OF = (A and (not B) and (not Nf) ) or
((not A) and B and Nf)

Recadll that for subtraction, binvert = 1.

VHDL code:

if (binvert =*0') then

OF <= (A and B and (not Nf ) ) or ( ( not A) and (not B) and Nf) ;
else

OF <= (A and (not B) and (not Nf) ) or ((not A) and B and Nf) ;

end if;

Set Logic

Support operation
dt rX, rA, B

X =1 if rA<rB

o

X='0ifrA>= 1B

From previous slides, note that ‘Set’ of MSB diceissimply the
sign of the result.

If wedoa‘SLT’ operation, we want Bnegate = 1 so that ALU
does A- B operation.  ‘Set’ of MSB dice becomes LSB
output value.




Set Logic (continued).

For ‘dt’ operation, ALU does A- B.

According to slides, the LSB of theresult will be EQUAL to the
SIGN bit of the A-B result, other bits will be zero.

Does thiswork?
A =0x7F, B=0x01. A-B = 0x7F — 0x01 = 0x7D.
Sign of result = ‘0’ result of SLT = 0x00 (A isNOT lessthan B)

Assume an 8-bit ALU:

A =0x80, B=0xFF. A-B =0x80- OxFF = 0x81
Sign of result = “1’, result of SLT = 0x01.
?? (A=-128, B=-1, sAislessthan B, so result correct!!!)

Set Logic (cont.)
Another Example:
A =0x7F, B =O0xFF. Comparing +127 to -1.
A is NOT LESSthanB, o result should be 0x00.
Lets see:
A-B = Ox7F - OxFF = 0x80. Sign bit = 1, result = Ox01!!!!!
WRONG!!

Overflow occurred — this means that just using the sign bit by itself is
not good enough.

We have to consider the overflow flag.

Set Logic (cont.)

Set Logic modified to include Overflow flag is (exercise 4.23).
Let Nf =sign bit of result
SET = ((not OF) and Nf) or (OF and (not Nf))

If A < B, then result of A-B should be Negative if overflow did not
occur.

However, if Overflow did occur, the Negative flag will be ‘0’ in the
caeof A <B.




What about SLTU? Set Lessthan UNSIGNED?

Need to use the Carry Flag in some manner to determine
the ‘Set’ bit (you figureit out).

We also need another control line to tell us if the operation
isan UNSIGNED operation or SIGNED operation since
thelogic for the ‘set’ bit will be different.

Carry-Select Adder

The Carry path is the dowest path in the ripple carry adder.
We can speed it up with the following scheme (8-bit adder):

A[7:4]  B[7:4] A[30]  B[3.0]

. _
. G
4bit Ripple Adder | « 4bit Ripple Adder [«

A[7:4]  B[74]

Cout
Sum([3:0]

Note that Cout of 1% 4-bit
stage selects the correct
sum of next stage. Upper
stage requires two 4bit

Sum[7:4] adders

Speeding Up Addition
* Ripple Carry adder — slowest, but least gates
o Carry Select Adder
=Breaks addition into groups of bits

=Each group consists of two ripple carry adders — one has the
CIN =0, theother hasCIN =1

=A 2/1 MUX that uses the Cout from the previous group is
used to select the correct sum.

= Speedup comes from carry not having to ripple through all
groups.
=Requires about 2x number of gates over Ripple Carry
* Carry LookAhead Adder
=Expensive in terms of number of gates
=Very fast since carries are generated without rippling.




Using Carry Lookahead + Ripple in a 8-bit adder
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Using Carry Lookahead + Ripple in a 16-bit adder
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Array Multiplier
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Array Multiplier
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Array Multiplier — Can we do better?
* One problem with the array multiplier on the previous
slideis that there are multiple critical paths

= It istough to speed up because there are multiple ‘ longest’
paths — we would have to speedup all of these paths.

¢ A better design uses Carry-Save-Adders (CSA)
=Carry and Sum brought out separately, carry does not ripple
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CSA Multiplier
Adder

needed at
bottom to
combine sum

Why isthe CSA Multiplier Better?

Carry Vector,l’ /l’ Sum Vector

Fast Adder (CLA)
Product (upper half))@’ N bits

N bits

Product (lower half)

Using a fast adder to combine Sum + Carry will speed

up multiplier!!!

Many other schemes are used for speeding up
multiplication, most involve variations on using CSAs.




