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Overflow Logic 

MSB logic block

Note that A, B are 
sign bits of 
operand.

Overflow logic depends on whether doing an addition or subtraction:
if (addition)  overflow = (A and B and  (not Nf  ) ) or  

( ( not A) and (not B) and Nf)
i.e. For addition, if sign bits of  operands are the same, but the result 
sign bit is different, then OVERFLOW has occurred

Sign bit of 
result for 
addition, 
subtraction.
Call this 
‘Nf’

Overflow Logic  ( cont).

What about subtraction?     (A – B)

If operands have different sign bits, and  the result sign bit is 
DIFFERENT from the sign of the A operand, then overflow!

If (subtraction)  OF = (A and (not B) and (not Nf) )  or
((not A) and B and Nf) 

Recall that for subtraction, binvert = 1.

VHDL code:

if (binvert = ‘0’) then
OF <=  (A and B and (not Nf  ) ) or ( ( not A) and (not B) and Nf)  ;

else    
OF <= (A and (not B) and (not Nf) )  or   ((not A) and B and Nf) ;

end if; 

Set Logic

Support operation 
slt rX,  rA, rB

rX =  ‘1’   if  rA < rB

rX = ‘0’ if rA >=   rB

From previous slides, note that ‘Set’ of  MSB slice is simply the 
sign of the result.   
If we do a ‘SLT’ operation, we want Bnegate = 1  so that ALU 
does  A- B operation.       ‘Set’ of MSB slice becomes LSB 
output value.
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Set Logic (continued).

For ‘slt’ operation, ALU does    A- B.

According to slides, the LSB of the result  will be EQUAL to the
SIGN bit of the A-B result, other bits will be zero.

Does this work?

A = 0x7F,   B = 0x01.          A-B = 0x7F – 0x01 = 0x7D.

Sign of result = ‘0’, result of SLT  =   0x00   (A is NOT less than B)

Assume an 8-bit ALU:

A = 0x80,  B= 0xFF.     A-B  = 0x80 – 0xFF = 0x81 
Sign of result = ‘1’, result of SLT = 0x01.
??   (A= -128,   B = -1,     so A is less than B, so  result correct!!!)

Set Logic (cont.)

Another Example:

A = 0x7F,   B = 0xFF.         Comparing +127 to  -1.

A is  NOT LESS than B,    so result should be  0x00.

Lets see:

A-B =  0x7F  - 0xFF    =   0x80.     Sign bit = 1, result = 0x01!!!!!

WRONG!!!   

Overflow occurred – this means that just using the sign bit by itself is 
not good enough.

We have to consider the overflow flag.

Set Logic (cont.)

Set Logic modified to include Overflow flag is (exercise 4.23).

Let   Nf = sign bit of result

SET =   ( (not OF) and  Nf) or  (OF and (not Nf))

If A < B, then result of A-B should be Negative if overflow did not 
occur.

However,  if Overflow did occur, the Negative flag will be ‘0’ in the 
case of A < B.
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What about SLTU?  Set Less than UNSIGNED?

Need to use the Carry Flag in some manner to determine 
the ‘Set’ bit (you figure it out).

We also need another control line to tell us if the operation 
is an UNSIGNED operation or SIGNED operation since 
the logic for the ‘set’ bit will be different.

Carry-Select Adder

4bit Ripple Adder4bit Ripple Adder

4bit Ripple Adder

The Carry path is the slowest path in the ripple carry adder.  
We can speed it up with the following scheme  (8-bit adder):

A[3:0] B[3:0]

Cin‘0’

A[7:4] B[7:4]

Sum[3:0]

A[7:4] B[7:4]

‘1’

1 0

Sum[7:4]

Cout

Note that Cout of 1st 4-bit 
stage selects the correct 
sum of next stage.  Upper 
stage requires two 4bit 
adders

2/1 mux

Speeding Up Addition
• Ripple Carry adder – slowest, but least gates
• Carry Select Adder

⇒Breaks addition into groups of bits 
⇒Each group consists of two ripple carry adders – one has the 

CIN  = 0, the other has CIN = 1
⇒A 2/1 MUX that uses the Cout from the previous group is 

used to select the correct sum.   
⇒Speedup comes from carry not having to ripple through all 

groups.
⇒Requires about 2x number of gates over Ripple Carry

• Carry LookAhead Adder
⇒Expensive in terms of number of gates
⇒Very fast since carries are generated without rippling.
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A7 B7

PG
G7 P7

A6 B6

PG
G6 P6

A5 B5

PG
G5 P5

A4 B4

PG
G4 P4

A3 B3

PG
P3

A2 B2

PG
G2 P2

A1 B1

PG
G1 P1

A0 B0

PG
G0 P0G3

G = G3 + P3 G2 + P3P2G1 + P3P2P1G0

P =  P3 P2 P1 P0

P 0,3

C4 =  G0,3  + P0,3   C0

G = G7 + P7 G6 + P7P6G5 + P7P6P5G4

P =  P7 P6 P5 P4

P 4,7G 4,7 G 0,3

C8 =  G4,7  + P4,7   C4
C0

Cout

Using Carry Lookahead + Ripple in a 8-bit adder

Ripple Adder Ripple Adder
C0

S[3:0]S[7:4]

PG 

A[3:0] B[3:0]

G[3:0] P[3:0]

PG 

A[15:12] B[15:12]

G[15:12] P[15:12]

PG 

A[11:8] B[11:8]

G[11:8] P[11:8]

PG 

A[7:4] B[7:4]

G[7:4] P[7:4]

P 0,3G 0,3P 7,4G 7,4P 11,8G 11,8P 15,12G 15,12

C0

C8 = G7,4 + P7,4 G0,3  

+ P7,4 P0,3   C0
C0

++++

C4 gen

C0C4C8C12

C12 gen

C16 = G15,12 + P15,12G11,8  

+ P15,12 P11,8   C8

Cout S[3:0]S[7:4]S[11:8]S[15:12]

Using Carry Lookahead + Ripple in a 16-bit adder

Array Multiplier

X3      X2        X1      X0
x       Y3      Y2        Y1      Y0

Y0X3    Y0X2     Y0X1     Y0X0

Y0X3    Y0X2     Y0X1     Y0X0

Y0X3    Y0X2     Y0X1     Y0X0

+    Y0X3    Y0X2     Y0X1     Y0X0

P7    P6         P5          P4         P3          P2          P1 P0          

Partial Products
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Array Multiplier

X3      X2        X1      X0
x       Y3      Y2        Y1      Y0

Y0X3    Y0X2     Y0X1     Y0X0

Y0X3    Y0X2     Y0X1     Y0X0

Y0X3    Y0X2     Y0X1     Y0X0

Y0X3    Y0X2     Y0X1     Y0X0

P7    P6         P5          P4        P3          P2          P1 P0          

+

+

+

adders

HA

Y1X0

X0 Y0X1

FA

X1

X2

FA

X2

X3

HA

X3

HA

Y2X0

FA

X1

FA

X2

HA

X3

HA

Y2X0

FA

X1

FA

X2

HA

X3

P0P1P2P3P4P5P6P7

HA = half adder
FA = full adder

Array Multiplier – Can we do better?

• One problem with the array multiplier on the previous 
slide is that there are multiple critical paths 
⇒ It is tough to speed up because there are multiple ‘longest’ 

paths – we would have to speedup all of these paths.

• A better design uses Carry-Save-Adders (CSA)
⇒Carry and Sum brought out separately, carry does not ripple

HA

A0 B0

S0C0

FA

A1 B1

S1C1

FA

A2 B2

S2C2

FA

A3 B3

S3C3

CSA

B[3:0]A[3:0]

S[3:0]C[3:0]
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HA

Y1X0

X0
Y0

X1

HA

X1

X2

HA

X2

X3

HA

X3

FA

Y2X0

FA

X1

FA

X2

HA

X3

FA

Y3X0

FA

X1

FA

X2

HA

X3

HAFAFAHA

P0P1P2P3P4P5P6P7
Critical path shown in red

CSA Multiplier

Adder 
needed at 
bottom to 
combine sum 
& carry.

Why is the CSA Multiplier Better?

CSA Array

A B

Sum VectorCarry Vector

N bits

Fast Adder (CLA)

Product (lower half)
Product (upper half)

Using a fast adder to combine Sum + Carry will speed 
up multiplier!!!   

Many other schemes are used for speeding up 
multiplication, most involve variations on using CSAs.

N bits

N bits


