
1

3/7/01 BR 1

The PI Model

processor.vhd

pc.vhd

imem.vhd

regfile.vhd

instruction memory

PC register and logic

Register File

alu.vhd

ALU

dmem.vhd

Data Memory

control.vhd

Control Logic

Auxiliary files:

define.vhd : A VHDL package that contains MIPS opcode definitions.
Used by control, ALU.

mips_components.vhd : A VHDL package that contains component
definitions for imem, pc, regfile, alu, dmem, control. Used by processor.vhd.

3/7/01 BR 2

Comments on Pipelined Implementation Model

• No branch support at all

• Supports Jump

• Does not have hazard detection or forwarding logic
– Will run the provided sample ‘program.s’ correctly as long as three

NOPs between every instruction.

• Basically the SCI model with registers between blocks

• Control signals have extensions on them to indicate what
stage they are used in. No extension means that this signal
is not needed in another stage
– e.g. memtoreg, memtoreg_ex, memtoreg_mem, memtoreg_wb

– Data signals that are passed to various stages also use extensions

– Tried to following signal naming convention in book

3/7/01 BR 3

Stalls (Hazard Detection)

• For the case of a LW followed by an ALU instruction that
uses the loaded value, need to insert stall in the EX stage
– stall_ex signal placed in code for this purpose, always a ‘0’ right

now
– If stall_ex = ‘1’, then control signals that can modify the processor

state (like MemWrite, RegWrite) need to be zeroed.

• For a stall, also need to keep from incrementing the PC
again, and prevent a new value from being loaded into the
instruction register
– PCwrite control writing the PC, always a ‘1’ now. Also, instruction

register loaded only if PCwrite = ‘1’.

• There is a process called “dostall” in ‘processor.vhd” that
needs to be modified to include stalls.

2

3/7/01 BR 4

Forwarding Paths

• There are no forwarding paths in the current model

• The process “fwdlogic” must be modified in processor.vhd
to add forwarding.
– The forwarding logic needs to alter the ‘data_a’ and ‘data_b’

values that go into the ALU

• The provided “program.s” will exercise many forwarding
paths if the nops are removed.
– The forwarding paths exercised are the ones from the MEM, WB

stages to the EXE stage.

– One path that is not exercised the case of a SW instruction needing
forwarded value from the WB stage.

3/7/01 BR 5

Optional Assignment

• Modify the processor.vhd to handle a LW stall and
forwarding paths from MEM, WB stages to the EXE
stages

• Check your work by removing the NOPs from the
program.s file and executing the model.

• Hint: Remove NOPS for one instruction at time so that
you can incrementally debug your added code.

• The ‘pi.do’ command file does not display all of the
signals you may need during debug – feel free to add more
signals!

• The modelsim.zip archive has been updated to contain the
PI model.

3/7/01 BR 6

2-Bit Prediction

11:
Strongly
Taken

10:
Weakly
Taken

01:
Weakly
not Taken

00:
Strongly
not Taken

AT AT

AT

AT

ANT

Initial State

ANT

ANT

ANT

AT - actually taken
ANT - actually not taken

States 11, 10 : Predict Taken
States 01, 00: Predict Not Taken

3

3/7/01 BR 7

Branch Prediction Accuracy

• Simulation Results on SPEC benchmark suit
– Fixed 62.5%

– Static, displacement based 68.5%

– Dynamic, 1-bit 89%

– Dynamic, 2-bit 93%

• Measured results from processor implementations
– 1-bit prediction 60 - 70%

– 2 bit prediction > 90%

– 3 bit prediction 80 % (HP PA 8000)

• The trend all major processor families is to dynamic, multi-bit
prediction

3/7/01 BR 8

Branch Target Address Cache

• If we are going to use branch predictors for dynamic
prediction, also need Branch Target Address Cache
(BTAC)

• Caches the ‘taken’ address of the branch based on the
address of the branch instruction
– Takes time to compute the branch address, this saves that time and

makes dynamic prediction faster

• BTAC does not have to be large, typically a few 100’s of
locations.

