

- Central Arbitration arbiter decides which device gets the bus via Bus Request/Bus Grant pairs
- Single Bus Master one device (the Root) initiates and controls all transfers (used by USB, IEEE Firewire)
- Time Division Multiplexing (TDM) give each device a scheduled time period in which to access the bus
- Carrier Sense Multiple Access (CSMA)
 - Used by single-cable Ethernet
 - Each device listens to what it sends if data is corrupted, then this means that a collision occurred (multiple devices tried to send)
 On collision, wait a random amount of time ('backoff time'), then
 - On collision, wait a random amount of time ('backoff time'), then try again. On successive collisions, keep increasing the range of backoff time.

BR

4/11/01

Notes on Arbitration

- A Device A has its request line asserted, requesting the bus.
- B Device B asserts its request line, also requesting the bus.
- C Arbiter grants Device A the bus since it had its request line asserted before Device B.
- D Device A asserts FRAME#, indicating that it is the current bus master. Device A sends address, data – transaction completed in cycle 4. Device negates FRAME#, releasing bus, but keeps its request asserted, indicating that it desires another transaction.
- E Arbiter grants bus to Device B by asserting GNT#-b and negating GNT#-a. Device B must have higher priority than Device A.
- F Device B only requires bus for one transaction, so negates its request while asserting FRAME#, indicating it is the bus master – the transaction is completed in cycle 6.
- G Arbiter grants Device A the bus by asserting GNT#-a, and negating GNT#-a.

BR

6

4/11/01

Latency vs. Throughput

- Latency is the time from when an operation is started to when the data is ready
- Throughput is operations per unit time

4/11/01

- Desire low latency and high throughput, but these are usually traded off against one another
- Arbitration Latency is time (in clocks) between a master's REQ# assertion and its GNT# assertion

 depends on number of bus masters, priority scheme, and the length of each master's transactions
- Long transactions by bus masters increase arbitration latency for other bus masters since they have to wait for the transactions to complete

- Arbiter needs some method of controlling the arbitration latency

BR

PCI Latency Timer

• The Latency Timer is a programmable timer required in each bus master that will limit the amount of time a master can control the bus

 used by OS to balance bus performance by controlling the arbitration latency

Data Phases	Bytes Transf.	Total Clks	Lat. Timer	Bandwidth (MB/s)	Latency (us)
8	32	16	14	67	0.48
16	64	24	22	89	0.72
32	128	40	38	107	1.20
64	256	72	70	119	2.16

Note that as throughput goes up (better bus utilization), latency increases. Numbers assume initial 8 clock latency from address and a 32-bit bus. $_{\rm BR}$

Theoretical Maximum (Peak) Bandwidth

Peak Bandwidth of PCI is:

- bytes per clock * clk freq = MB/s
- 32 bit bus, 33 Mhz: 4 * 33 Mhz = 132 MB/s
- 64 bit bus, 66 Mhz: 8 * 66 Mhz = 528 MB/s
- PCI cannot achieve peak bandwidth. Many factors contribute to not reaching peak bandwidth

 turnaround cycles on a bus are "dead" cycles (no data transferred)
 - handoff cycles from one bus master to another bus master
 - address phase of transaction does not transfer data
- Clocks for a PCI transaction is initial target latency (includes time for address phase) + data phases (assume 1 clk/data phase).

4/11/01

BR

Device	Bandwidth (MB/s)	Bytes/10 us	Time Used (us)	# of transactions per slice	Notes
Graphics	50	500	6.15	10	1
LAN	4	40	0.54	1	2
Disk	5	50	0.63	1	3
ISA Bridge	4	40	0.78	2	4
PCI to PCI bridge	9	90	1.17	2	5
Total	72	720	9.27	16	2.16
All transa	ctions assu	me an 8 clo	ck initial targ	get latency.	

PCI Notes

SCSI Evolution

- SCSI-1 was 8 bits, 5 MB/sec.
- SCSI-2 doubled bandwidth by doubling bus speed
- Ultra SCSI doubled bandwidth by doubling bus speed
- Ultra Wide SCSI doubled bandwidth by increasing data size from 8 bits to 16 bits
- Ultra2 SCSI doubled bandwidth by going to differential signaling with reduced voltage swing
- Ultra160 SCSI doubles bandwidth by transferring data on each transition

To increase bandwidth: increase bus speed, change physical signaling method, increase data width, transfer data on each clock edge

4/11/01 BR 13

- Data rates 100 Mb/s to 400 Mb/s
- Differential voltage swing < 300 mV
- + Rambus uses limited voltage swing signaling (+/- $200\mbox{ mV})$ about a fixed voltage reference. Differential pairs NOT used. Voltage Ref = 1.0 V.
 - Limited swing signaling gives high speed signaling (400 Mhz clock, data transfer on each clock edge)
 - Two clock signals used which are complements of each other data latched on clock crossing.
 - Only used for Processor/Memory buses distance is very short, so noise BR
 - coupling is not as much of a problem.

4/11/01

18

Maintaining Data Synchronization

- When sending data between devices, must delineate data boundaries
- · Asynchronous protocols use handshaking signals to do this
- Synchronous protocols use a time reference (a clock signal)
- Methods for specifying the time reference in synchronous transfers
 - The clock signal can be part of the bus specification (i.e. PCI)
 Data encoding allows clocks at receiver and transmitter to remain synchronized

BR

- The clock signal is encoded as part of the data

4/11/01

21

