
1

4/11/01 BR 1

Solving Bus Contention between Multiple Devices

• Central Arbitration - arbiter decides which device gets the
bus via Bus Request/Bus Grant pairs

• Single Bus Master – one device (the Root) initiates and
controls all transfers (used by USB, IEEE Firewire)

• Time Division Multiplexing (TDM) – give each device a
scheduled time period in which to access the bus

• Carrier Sense Multiple Access (CSMA)
– Used by single-cable Ethernet

– Each device listens to what it sends - if data is corrupted, then this
means that a collision occurred (multiple devices tried to send)

– On collision, wait a random amount of time (‘backoff time’), then
try again. On successive collisions, keep increasing the range of
backoff time.

4/11/01 BR 2

1CLK

PCI Read Transaction

2 3 4 5 6 7 8 9

FRAME#

address data1 data2
AD[31:0]

data3

bus cmd
C/BE[3:0]#

byte enables for data

IRDY#

TRDY#

DEVSEL#

da
ta

 tr
an

sf
er

w
ai

t

w
ai

t

da
ta

 tr
an

sf
er

da
ta

 tr
an

sf
er

w
ai

t

address
phase

data
phase

data
phase

data
phase

bus transaction

4/11/01 BR 3

1CLK

PCI Write Transaction

2 3 4 5 6 7 8 9

FRAME#

address
AD[31:0]

data3

bus cmd
C/BE[3:0]#

byte enables for data

IRDY#

TRDY#

DEVSEL#

w
ai

t

w
ai

t

da
ta

 tr
an

sf
er

w
ai

t

address
phase

data
phase

data
phase

data
phase

bus transaction

data1 data2

da
ta

 tr
an

sf
er

da
ta

 tr
an

sf
er

2

4/11/01 BR 4

Read, Write Transactions

• Master drives FRAME#, Bus command, provides address, provides
data (write only)

• Target (slave) decodes address, provides data (read), accepts data
(write)

– For READ, turnaround cycle needed on AD for target to drive
Address/data lines with data

– For READ, initial latency of data from address is at least 1 cycle
(turnaround)

– For WRITE, data can follow on cycle immediately after address

• Data can be transferred every clock. Wait cycles can be inserted by
either Master or Slave

– IRDY# driven by master to indicate it is ready to provide data

– TRDY# driven by target to indicate it is ready to provide data

– Both IRDY# and TRDY# must be asserted to perform a data transfer

4/11/01 BR 5

1 2 3 4 5 6 7
CLK

REQ#-a

REQ#-b

GNT#-a

GNT#-b

FRAME#

address data address data

PCI Basic Arbitration

access - A access - B

AD

hi-Z

hi-Z active drive

A

B

C

D

E

F

F

G

4/11/01 BR 6

Notes on Arbitration

A Device A has its request line asserted, requesting the bus.

B Device B asserts its request line, also requesting the bus.

C
Arbiter grants Device A the bus since it had its request line asserted
before Device B.

D
Device A asserts FRAME#, indicating that it is the current bus master.
Device A sends address, data – transaction completed in cycle 4. Device
negates FRAME#, releasing bus, but keeps its request asserted,
indicating that it desires another transaction.

E Arbiter grants bus to Device B by asserting GNT#-b and negating
GNT#-a. Device B must have higher priority than Device A.

F
Device B only requires bus for one transaction, so negates its request
while asserting FRAME#, indicating it is the bus master – the
transaction is completed in cycle 6.

G Arbiter grants Device A the bus by asserting GNT#-a, and negating
GNT#-a.

3

4/11/01 BR 7

Latency vs. Throughput

• Latency is the time from when an operation is started to
when the data is ready

• Throughput is operations per unit time
• Desire low latency and high throughput, but these are

usually traded off against one another
• Arbitration Latency is time (in clocks) between a master’s

REQ# assertion and its GNT# assertion
– depends on number of bus masters, priority scheme, and the length

of each master’s transactions

• Long transactions by bus masters increase arbitration
latency for other bus masters since they have to wait for
the transactions to complete
– Arbiter needs some method of controlling the arbitration latency

4/11/01 BR 8

PCI Latency Timer

• The Latency Timer is a programmable timer required in
each bus master that will limit the amount of time a master
can control the bus
– used by OS to balance bus performance by controlling the

arbitration latency

2.16119707225664

1.20107384012832

0.728922246416

0.48671416328

Latency (us)Bandwidth
(MB/s)

Lat.
Timer

Total
Clks

Bytes
Transf.

Data
Phases

Note that as throughput goes up (better bus utilization),
latency increases. Numbers assume initial 8 clock latency
from address and a 32-bit bus.

4/11/01 BR 9

Theoretical Maximum (Peak) Bandwidth

• Peak Bandwidth of PCI is:
bytes per clock * clk freq = MB/s

• 32 bit bus, 33 Mhz: 4 * 33 Mhz = 132 MB/s
• 64 bit bus, 66 Mhz: 8 * 66 Mhz = 528 MB/s
• PCI cannot achieve peak bandwidth. Many factors

contribute to not reaching peak bandwidth
– turnaround cycles on a bus are “dead” cycles (no data transferred)
– handoff cycles from one bus master to another bus master
– address phase of transaction does not transfer data

• Clocks for a PCI transaction is initial target latency
(includes time for address phase) + data phases (assume 1
clk/data phase).

4

4/11/01 BR 10

PCI Bus Example

420.78404ISA Bridge

521.17909PCI to PCI
bridge

2.16169.2772072Total

310.63505Disk

210.54404LAN

1106.1550050Graphics

Notes# of
transactions
per slice

Time Used
(us)

Bytes/10 usBandwidth
(MB/s)

Device

All transactions assume an 8 clock initial target latency.

Note that bus utilization is 93%, but only 72/132 = 55% of peak
bandwidth is achieved.

4/11/01 BR 11

PCI Notes

• Supports 5V and 3.3V signaling
– I/O buffers on board draw power from either 5.0V or 3.3V rail

• On backplane pinout, CLK is bracketed by two Ground
pins to shield other signals from noise coupling

• CLK frequency is 33 Mhz or 66 Mhz.
– Same protocol (all transfers on rising edge of clock)

– All devices on 66 Mhz PCI bus must operate at 66 Mhz

• Split transactions is not supported on the PCI bus
– Once the bus is released by the master, the transaction is over with

– Can’t send the address, then release the bus and come back and get
the data later – must wait for the data during the same transaction

– Because of this, devices on the PCI bus must be LOW LATENCY

4/11/01 BR 12

Increasing Bus Bandwidth

The SCSI standard (Small Computer System Interface)
provides a good example on how the bandwidth for a bus
standard has been improved over time

From
Adaptec

5

4/11/01 BR 13

SCSI Evolution

• SCSI-1 was 8 bits, 5 MB/sec.
• SCSI-2 doubled bandwidth by doubling bus speed
• Ultra SCSI doubled bandwidth by doubling bus speed
• Ultra Wide SCSI doubled bandwidth by increasing data size

from 8 bits to 16 bits
• Ultra2 SCSI doubled bandwidth by going to differential

signaling with reduced voltage swing
• Ultra160 SCSI doubles bandwidth by transferring data on each

transition

To increase bandwidth: increase bus speed, change physical
signaling method, increase data width, transfer data on each
clock edge

4/11/01 BR 14

SCSI Asynchronous Transfer

Req

Ack

Datainvalid invalid

Asynchronous Transfer
Four phase protocol

Req

Ack

Datainvalid Data

Asynchronous Transfer
Two phase protocol
Used in Ultra160 SCSI

da
ta

 tr
an

sf
er

da
ta

 tr
an

sf
er

da
ta

 tr
an

sf
er

4/11/01 BR 15

SCSI Synchronous Transfer

SCSI supports a synchronous transfer mode in which the ACK
lags the REQ.

Data Data Data Data

Req

Ack

Ack pulses can lag behind Req by several pulses. Same number
of Ack pulses must be sent as Req pulses.

6

4/11/01 BR 16

Advanced Electrical Signaling
LVDS – Low Voltage Differential Signal (LVDS)

LVDS used on Ultra2 SCSI - differential signaling of
300 mv about Vcm = 1.25 V.

Smaller voltage swing means faster signaling!
Differential voltage signaling also rejects cabling noise.

D+

D-

Vcm = 1.25 V

D- > D+ = ‘0’

D+ > D- = ‘1’

Resistor termination needed to prevent reflections.

Differential signal requires 2X wires!

D+

D-

4/11/01 BR 17

Differential Signaling: Noise Rejection

Differential signaling very good at rejecting common-mode
noise. If noise is coupled into a cable, then usually it is
coupled into all wires in the cable. This ‘common-mode’ noise
(Vcm) can be rejected by input amplifier.

+

-
~ D+

~
D-

Vo = (D+) - (D-)

+

-
~ D+

~
D-~

Vcm

~ Vcm

Vo = (Vcm + D+) - (Vcm+ D-)
= (D+) - (D-)

4/11/01 BR 18

Other Standards Use Advanced Signaling Techniques

• USB uses differential signaling, but is not low voltage swing
– Voltage swing can be > 2 volts

– Lower data rates - peak is 12 Mb/s

• IEEE Firewire uses differential low voltage signaling, but a different
standard than LVDS

– Data rates 100 Mb/s to 400 Mb/s

– Differential voltage swing < 300 mV

• Rambus uses limited voltage swing signaling (+/- 200 mV) about a
fixed voltage reference. Differential pairs NOT used.

– Voltage Ref = 1.0 V.

– Limited swing signaling gives high speed signaling (400 Mhz clock, data
transfer on each clock edge)

– Two clock signals used which are complements of each other – data
latched on clock crossing.

– Only used for Processor/Memory buses – distance is very short, so noise
coupling is not as much of a problem.

7

4/11/01 BR 19

Dealing with Varying Latency: Split Transactions

• SCSI is intended for devices with widely varying I/O
characteristics.
– This means the I/O latency can be highly variable

• For high latency devices, do not want to wait for data to
become available after initial command.
– Would like to issue commands to other devices, then come back

later and finish the transaction.

• Split Transactions adds parallelism to I/O operations

4/11/01 BR 20

Split Transaction Example
Without Split Transactions

A: seek
cmd

waiting A: data
xfer

Bus

Disk A

Disk B

seeking A: data
xfer

B: seek
cmd

waiting B: data
xfer

idleidle

seekingidle B: data
xfer

A: seek
cmd

waiting A: data
xfer

Bus B: seek
cmd

idleB: data
xfer

Disk A

Disk B

seeking A: data
xfer

idleidle

seeking B: data
xfer

With Split Transactions

4/11/01 BR 21

Maintaining Data Synchronization

• When sending data between devices, must delineate data
boundaries

• Asynchronous protocols use handshaking signals to do this

• Synchronous protocols use a time reference (a clock signal)

• Methods for specifying the time reference in synchronous
transfers
– The clock signal can be part of the bus specification (i.e. PCI)

– Data encoding allows clocks at receiver and transmitter to remain
synchronized

– The clock signal is encoded as part of the data

8

4/11/01 BR 22

Data Synchronization: USB

USB – Universal Serial Bus – serial data transfer.

Transfer is half duplex using bidirectional differential signaling

Data speeds are 1.5 Mb/s, 12 Mb/s.

Data encoding allows Sending/Receiving clocks to
remain synchronized.

4/11/01 BR 23

NRZ

NRZI

Non-return to zero (NRZ) -
normal data transitions.

NRZ – Inverted (not a good
description, is not inverse of
NRZ). A transistion for
every zero bit.

Strings of zeros means lots of
transitions. Strings of ‘1’s
means steady line.

4/11/01 BR 24

Bit Stuffing – a ‘0’ is inserted after every six consecutive ‘1’s in
order to ensure a signal transition so that receiver clock can remain
synchronized to the bit stream.

Bit stuffing done automatically by sending logic. Sync
pattern starts data transmission and is seven ‘0’s
followed by a ‘1’.

9

4/11/01 BR 25

Receiver/Xmitter logic uses a 48
Mhz internal local clock.

48Mhz/ 12Mbs = 4 clocks per
bit time for high speed
signaling.

48Mhz/1.5 Mbs = 32 clocks per
bit time for low speed signaling.

A guaranteed transition every 7
bit times allows local clock
synchronization to the serial
data stream. Sync pattern
allows clock sync at beginning
of packet.

4/11/01 BR 26

Data Synchronization: IEEE Firewire

IEEE 1394 (Fire Wire) – serial data transfer.

Transfer is half duplex using bi-directional differential signaling

• Signaling uses Data Strobe encoding – requires two binary
signals to send one bit, each binary signal is represented by
a differential pair of signals (D+, D-, S+, S-) Cable also
has VDD, GND signals for 6 wires total (USB has 4 wires
total).

Data encoding sends the clock encoded in the data signal. The
Receiver can EXTRACT the clock from the data.

4/11/01 BR 27

Data Strobe Signaling

Serial Encoding method first used in a multicomputer called the
Transputer, invented by SGS-Thompson

0 0
1 1 1

Strobe

Data
0 0 0

1

Extract clock from data and strobe as:
Clock = Data XOR Strobe ; Data clocked on both edges

Strobe changes
when Data does
not.

Strobe
xor Data

10

4/11/01 BR 28

XOR
data

strobe
clock

D Q

C

FF clocked on both edges

delay

Extracting the clock from data/strobe, latching the
data. Data stream is ‘self-clocking’. Can vary
speed of data stream and circuit will still work.

No bit stuffing needed.
data out

