
1

4/16/01 BR 1

Multiprocessors Connected by a Single Bus

Processor A

Cache

Single Bus

Processor B

Cache

Processor C

Cache

Memory I/O

4/16/01 BR 2

Cache Consistency (note: this protocol is different from book)

• How do we maintain cache consistency between these
multiple processors?
– i.e, if Processor A and Processor B caches both have the same data,

and Processor A modifies its data, what happens to the data in
Processor B?

• Assume a Copyback cache scheme.
– With single CPU, only needed two status bits per block – ‘V’

(valid bit), and M (modified bit or dirty bit).

– With multiple CPUs over shared bus, add another status bit – ‘S’
(shared bit).

• We will also take advantage of the fact that processors can
see ALL transactions over shared bus
– Processors can ‘snoop’ the bus – this is sometimes called a

‘snooping’ cache protocol

4/16/01 BR 3

Cache Line States

• Using the 3 status bits: V (valid), M (modified), S
(shared), define 5 states:
– Invalid (I) – cache line not valid

– Exclusive-Clean (EC) – only one cache module has a copy and it is
clean

– Exclusive Modified (EM) – only one cache module has a copy and
it is modified

– Shared Clean (SC) – same cache line may exist in other modules

– Shared Modified (SM) - same cache line may exist in other
modules, but this cache module is the owner

• A CPU may have to provide a cache block to other
processors if the processor has modified the block

2

4/16/01 BR 4

Bus Transactions for Cache Consistency

• Bus transactions
– Coherent Invalidate – all caches that contain this block should mark it

invalid
– Coherent Read – a read which maintains cache coherency
– Coherent Write – a write which maintains cache coherency
– Coherent Write and Invalidate (combined for performance)
– Coherent Read and Invalidate (combined for performance)

• Signals used cache coherency
– MSH# : input/output, open drain, shared. Asserted by cache controller in

response to coherent read request if this cache has a valid copy of this
cache block. More than one cache controller can assert this line.

– MIH# : input/output, tri-state: Asserted by owner of a cache block to
inform main memory that the current coherent read should be ignored –
data will be supplied by this cache controller.

4/16/01 BR 5

Cache State Diagram (Copy-back scheme)

EC SC

I

EM SM

Snoop hit

Load
Miss*

Load
Miss**

Store
Hit

Store
Hit

Store
Miss

Snoop hit

* MSH# not asserted
** MSH# asserted

owned

owned

Snoop hit: another
processor requests
block

4/16/01 BR 6

Notes on Cache States

• If same block is shared among processors
– only one processor (the owner) will be in Shared Modified state

(SM)

– other processors will have the block in Shared Clean State

• If owner of a SM block does a write, then the processor
will issue an invalidate transaction on the bus that will
cause other processors to invalidate the block. Cache
block then goes to EM state.
– Must invalidate other blocks because the local write by the

processor will not be ‘seen’ by other processors

• If a processor does a Write to a block in a Shared Clean
state must do the same as above.

3

4/16/01 BR 7

Example Sequences

Proc A: Blk A – I (invalid) Proc B: Blk A – I

read miss, do Coherent Read

Proc A: Blk A - EC

Proc B: Blk A - SC

read miss, do
Coherent Read

assert MSH

Snoop Hit

Proc A: Blk A - SC

4/16/01 BR 8

Example Sequences (cont)

Proc B: Blk A - SCProc A: Blk A - SC

write hit, do
Coherent Invalidate

Proc B: Blk A - EMProc A: Blk A - I

read miss, do Coherent Read
Snoop Hit

assert MSH,
provide Blk A data

Proc B: Blk A - SM
Proc B: Blk A - SC

4/16/01 BR 9

Example Sequences (cont)

Proc A: Blk A – I (invalid) Proc B: Blk A – I

write miss, do Coherent
Read & Invalidate

Proc B: Blk A – EM

write miss, do Coherent Read
& Invalidate

Snoop Hit

assert MSH,
provide Blk A data

Proc B: Blk A – I
Proc B: Blk A – EM

4

4/16/01 BR 10

A Possible Problem?

• What if two Processors both have block A in SC (shared
clean) state.

• Both processors have a write hit to block A. What
happens?
– Each processor tries to access the bus to do an Invalidate

transaction.
– The arbiter will give the bus to one of the two processors

(simultaneous bus request).
– The winning processor will set its block A state to EM.
– The losing processor postpones the write, invalidates its cache.

The losing processor then issues a Read & Invalidate
– Winning processor provides block A, changes block state to I
– Losing processor ends up with Block A in EM state.

• No problem, caches still coherent.

4/16/01 BR 11

Multiprocessor Synchronization

• Lock variables (semaphores) used to coordinate tasks
between multiple processors

• An atomic swap operation can be used to implement locks
– swaps a register with a memory location atomically (i.e., cannot be

interrupted during the swap).

• Let ‘0’ be the ‘unlocked’ state. A lock is a fixed memory
location.

• A processor checks to see if the lock is free (= 0). To grab
the lock, swap the memory location with a register that is
non-zero (i.e, register value = ‘1’).
– cache coherency protocol and atomic operation ensures that two

processors executing the swap command simultaneously will
update the lock variable sequentially, which hands off the lock
correctly.

4/16/01 BR 12

Lock Example (a little different from Figure 9.7 which assume write-thru cache)

Write invalidate from P1Lock = ‘1’, but
not in cache (I)

Lock = 1 (EM), spins,
testing for lock = 0.

Owns lockSwap reads lock = 1.
Writes lock = 1

7

Write Invalidate from P2Has Lock, lock =
1, update shared
data

cache miss (I) because
of cache invalidate from
P2

Lock = 1, but not in
cache (I)

6

Cache miss for P1
satisfied

Swap, read
lock=0, set to ‘1’.

Coherent Read, Lock=0,
SC

5

Cache miss for P2
satisfied

Coherent Read,
Lock=0, SC

waits for bus4

Arbiter picks P2 for
miss

Cache miss (I)Cache miss (I)Lock = 0 (EM)3

Write invalidate from P0 Spins, testing if
lock =0 (SC)

Spins, testing if lock =0
(SC)

Sets lock=0 (EM)2

NoneSpins, testing if
lock =0 (SC)

Spins, testing if lock =0
(SC)

Has lock in
register, (SC)

1

Bus ActivityProc P2Proc. P1Proc. P0Step

