
1

BR 6/00 1

Update on Simple Pipelined System Homework

• I have updated the archive with my complete solution to this
homework
– I feel comfortable giving you my solution because it is such a poor

quality solution – I expect you to do a much better job
– The solution does illustrate the complete methodology and has the

spice testbench

• I used logic synthesis to get a quick and dirty solution
– Synthesis library only supported basic cells – most complex cell was

a 2/1 mux
– Longest register to register path had 16 gates on it!!!
– My spice netlist did not buffer the clock network!
– Meager testing showed my spice netlist to work with a clock period

of 3 ns, but fail for 2 ns.

BR 6/00 2

Modified alu.v RTL

• I modifed the alu.v RTL to have another level of hierarchy.
The ‘alu’ module now has two modules in it
– module alu_norf has all logic except the register file. This

module contains all of the logic that YOU are supposed to specify.
– This has same functionality as previous RTL, but will be easier to

generate spice netlist once you have specified the logic.

tb_alu (in file alu_rtl/tb_alu.v)

alu (in file alu_rtl/alu.v)

alu_norf (in file
alu_rtl/alu_norf.v

regfile (in file
alu_rtl/alu.v)

BR 6/00 3

Simulating your Gate Level alu_norf.v

• I have created another modelsim library for your gate level
simulation
– modelsim/src/alu_gate
– The library directory includes a makefile.

• The file that contains the Verilog models of all of your
gates should be placed in modelsim/src/alu_gate/libcells.v

• Your gate level solution for alu_norf.v (all logic except the
register file) should also be placed in the same directory
– Your gate level simulation (alu_gate) and the RTL simulation

(alu_rtl) should produce the same results.

• To simulate, compile do:
– gmake –f Makefile/alu_gate
– qhsim –lib alu_gate tb_alu –c –do “run 20 us;quit”

BR 6/00 4

Producing the Spice netlist
• I am assuming that your gate level solution (alu_norf.v)

will be hierarchical
– Correction: your gate level solution SHOULD BE hierarchical!!!

Writing a flat netlist for a design of this complexity is too error
prone!)

– It will have a lot of modules in it for various common functions
like a 4-bit DFF module, a 5-bit DFF module, a 2(?)-to-1 Mux
module with 5-bit inputs, etc.

– Other modules will tie these together to form the complete
datapath.

– The gate modules are in libcells.v
• As another example of a hierarchical gate level netlist,

look at synopsy/rtl/test_flat.v
– The top level module of this hierarchy is called ‘control’ and it

calls several other modules defined in this file.

BR 6/00 5

Flattening the Hierarchy
• The method I used to get a spice netlist first required

flattening the gate level model
– ‘Flattening’ removes all hierarchy and produces one module that

just has all gate-level modules in it.
• The synopsys shell_script synopsys/flatten.script reads the

file rtl/test_flat.v and produces a flattened version in
gate/test_flat.v
– Look at the two files and understand the differences
– The shell script also makes all Verilog bus definitions to be written

out as single net connections (I.e data[3:0] is written out as
data[3], data[2], ..etc. This is important as Spectre does not
understand busses.

• The file synopsys/gate/alu_norf_gate.v is my gate level
solution.

BR 6/00 6

Verilog to Spice

• The directory “./spectre” contains all the spice files for the
testbench and a couple of perl scripts

• The perl script v2sp.pl can be used to convert a file containing
Verilog instance declarations to Spectre instances
– The file spectre/alu_norf_gate.v is my gate level solution with

everything removed except instance statements
– Do “cat alu_norf_gate.v | v2sp >alu_norf.sp” to convert to Spectre

format
– Look at the files alu_norf_gate.v and alu_norf.sp and understand the

differences

2

BR 6/00 7

Spice Netlist of Complete System

• The complete spice netlist is in the file
spectre/alu_netlist.sp
– Defines a subcircuit for alu_norf and includes the file alu_norf.sp.

Creates an instance of the alu_norf subcircuit.
– Includes the Verilog-A register file model “regfile.va” and creates

an instance of this.
– Includes the Verilog-A stimulus model “alustim.va” and creates an

instance of this.
• The top level spice testbench is spectre/tb_alu.sp

– Defines the clock driver, includes ‘alu_netlist.sp’, defines transient
analysis, includes transistor models, etc.

• The file spectre/lib_generic.sp contains the spice subcircuit
definitions for my gates using the N_def, P_def transistor
models.

BR 6/00 8

Stimulus model alustim.va

• The Verilog-A model alustim.va provides the stimulus for
the testbench inputs
– It includes a header file called ‘alustim.h’ that defines the

‘program’ to be executed

• The perl script spectre/assemble_spdat.pl can be used to
produce a header file from a .asm file
– ‘assemble_spdat.pl add_prog.asm’ will create ‘add_prog.h’
– Must copy ‘add_prog.h’ to file ‘alustim.h’ before executing

spectre (‘spectre tb_alu.sp’)

BR 6/00 9

Speeding Up Spectre

• Initially, you just want to know if your spectre netlist
works or not
– Can use the transistor models defined in ‘tsmc018_fast.m’
– These are MOS0 models so transistors are switches. Simulation

time significantly reduced, but timing information is bogus
• You can also substitute Verilog-A models for some

subcircuit calls to reduce the number of transistors
– The file lib_generic_va.sp replaces the DFF, NAND3 subcircuits

with Verilog-A models (dff.va, nand3.va).
– This would be used to speed up your simulation to check

functionality
– By looking at ‘dff.va’, ‘nand3.va’ easy to write other models like

this.

BR 6/00 10

Other Comments on Spectre
• The file ‘tb_alu.sp’ has disabled saving of any simulation

data for disk space reasons
– ‘opts save=none’
– The regfile.va model prints message on each register file write

• If you want to save some signal values, try either
– use explicit ‘save’ statements (see docs) or
– use ‘opts save=lvlpub nestlvl=1’ (saves all public signals at first

level of heirarchy).
– If you save ALL signals at all levels of the heirarchy, the output

file will be large

• The transient analysis statement uses ‘errpreset=liberal’
– This speeds up the simulation at the cost of some accuracy
– I will use this option in testing your designs, so don’t change it.

