

K fitted values, measured noload values

Driving Gate	tphl		tplh	
Size	K	noload	K	noload
1X	8.2	53	12.6	57
2X	6.3	61	7	63
3X	5.2	72	5.3	68
6X	3.2	101	3	89

delay = K * Load + noload

Load is measured in inverter gate sizes. BR 6/00

3

	TPHL	TPLH
Single K, noload (K for gate size = 3)	-1.1%	7.2%
Computed K, noload based on driving gate size	2.8%	-3.2%
Actual K, noload	3.0%	1.0%

Try 3 new paths: all gates on path = 1x; 3x; 6x

BR 6/00

Delay Prediction - 1X gates on path

	TPHL	TPLH	
Single K, noload (K for gate size = 3)	-0.7%	3.5%	
Computed K, noload based on driving gate size	-14.1%	-14.3%	
Actual K, noload	-4.8%	-10.3%	

Under estimating the delay

BR 6/00

	diction - 3X gate	b on paul
	TPHL	TPLH
Single K, noload (K for gate size = 3)	23.3%	17.5%
Computed K, noload based on driving gate size	29.1%	15.8%
Actual K, noload	23.3%	17.5%

Not good - over estimating delay significantly

BR 6/00

9

Delay Prediction - 6X gates on path

	TPHL	TPLH
Single K, noload (K for gate size = 3)	38.6%	27.9%
Computed K, noload based on driving gate size	48.1%	28.6%
Actual K, noload	47.4%	41.5%

Delay estimations off by almost 50%!!!

BR 6/00

11

So, what to do?

Most modern synthesis tools use a lookup table approach for delay estimation where the two axis of the table is input slope and output load. Must have this table for EACH GATE SIZE, and for EACH DELAY (different tables for TPLH, TPHL

Input		Output Capacitance Load			
slope (V/ps)	4 fF	10fF	30fF	100 fF	
0.010	24 ps	xxx ps	yyyy ps	zzz pss	
0.03	xxxx	XXXXX	xxxxx	XXXXX	
0.10	уууу	уууу	уууу	ууу	

Delay table for 1X inverter, TPLH

Because you must know input slope, must also have lookup table for OUTPUT slope based on input slope and output load BR 6/00 13

