

	0.18	u Re	sults (Vdd = 3	3.3v)	
	delay (ps)	powe	r (uW)	cap (fF)	1	
static	46		89	16	Clk per. = 2 ns	
pass tran	56		109) 62	(500 Mhz)	
tran gate	59		80	15		
pass tran + pullup	71		91	17	-	
					-	
	delay (ps)	powe	r (uW)	cap (fF)		
static	46		8.9	16	Clk per. = 20 ns	
pass tran	56		34) 20	(50 Mhz)	
tran gate	59	8.0		15		
pass tran + pullup	71		9.1	17	-	
-	1		BR 6/00		_ 5	

		0.35u R	esults		
	delay (ps)	power (uW)	cap (fF)]	
static	109	116		Clk per. $= 2$ ns	
pass tran	152	(109	20	(500 Mhz)	
tran gate	181	123	23		
pass tran + pullup	183	122	22		
	delay (ps)	power (uW)	cap (fF)		
static	109	9 11.6 21		Clk per. = 20 n	
pass tran	152	13.0	24	(50 Mhz)	
tran gate	181	12.4	23		
pass tran + pullup	183	12.4	23		
			0	7	

	0.10	u res	uns (Vdd = 1	.0V)
	delay (ps)	power	(uW)	cap (fF)	
static	72		25	15	Clk per. = 2 ns
pass tran	108		26) 16	(500 Mhz)
tran gate	99		23	14	
pass tran + pullup	(132		25	16	
	delay (ps)	power	(uW)	cap (fF)	
static	72		2.5	16	Clk per. = 20 n
pass tran	108) 20	(50 Mhz)
tran gate	99			15	(50 10112)
pass tran +	132		2.5	17	

Misc Issues: Pass transistor sizing

In TG mux, should PMOS pass transistor be 1/1 or 2/1? Only reason to increase size would be to decrease delay? Power dissipation will obviously go up.

For 0.35 u: 1/1 sizing, delay = 181 ps 2/1 sizing, delay = 190 ps

For 0.18u: 1/1 sizing, delay = 59 ps 2/1 sizing, delay = 62 ps

This should not surprise you – if a pass transistor is driving a small load, it should be minimum sized.

BR 6/00

11

Misc Issues: Weak pullup sizing If too strong, gate is slow, and will also increase crowbar power dissipation because fighting strong pullup will keep path between Vdd/GND open longer. If too weak, then will not stop static power dissipation. Also, making it very weak will mean a long channel, more area (area not a big issue usually, but still needs consideration). I used split transistor: L = 3 * Lmin for grounded gate device. For 0.18 u: L = 1 * Lmin: 85 ps, 97 uW (clk per = 2ns) L = 3 * Lmin:71 ps, 91 uW (clk per = 2ns) 71 ps, 91 uW (clk per = 2ns) L = 5 * LminBR 6/00 12

