
1

BR 6/00 1

Homework #4

• All Spice problems in this homework are to be done for
technologies
– tsmc_0_18.model
– Vdd = 2.5 V, default temp
– I will provide a testbench for your circuit that will supply input

waveforms plus a global clock.
– You can work in teams of 2 if desired.
– Will be worth twice that of previous assignments.
– Do not use any GEO parameters – the default value will use worst

case assumptions for source/drain capacitance
– Use node names of VDD, GND for all power supply, ground

connections in your subcircuits.

BR 6/00 2

4-Bit ALU in Domino Logic

Goal: create a 4-bit ALU that uses a 2-phase domino logic
pipeline.

D
F
F

Domino
Cmos

L
A
T

�1

�1

pulsed

2-phase
clk gen

Domino
Cmos

�2

Gclk

4 bit ALU
output lat

Gclk provided by a 10X
2/1 inverter (not infinite
drive)

�2

2

BR 6/00 3

ALU Structure

Add, Sub, And,
OR4

4

4
Set

Logic
Vflag 4

Zero
Detect Zflag

binvert aluop

aluop: 00 = AND, 01 = OR, 10 or 11: Add/Sub

setop: 00= slt, 01= sltu, 10 or 11: pass thru

Cout

Cin

2
setop

2

Vflag

Cflag

BR 6/00 4

Add/Sub/And/Or Cell

Cout

Operations: AND, OR, ADD, SUB

If SUB, then Carryin LSB = 1, Binvert = 1.

Basic cell

3

BR 6/00 5

Overflow Flag Logic

Overflow logic depends on whether doing an addition or subtraction:
if (addition) overflow = (Amsb and Bmsb and (not Smsb)) or

((not Amsb) and (not Bmsb) and Smsb)

i.e. For addition, if sign bits of operands are the same, but the result
sign bit is different, then OVERFLOW has occurred. Smsb is the
most significant bit of the result.

If (subtraction) OF = (Amsb and (not Bmsb) and (not Smsb)) or
((not Amsb) and Bmsb and Smsb)

Note: In all cases, Binvert = 1 for subtraction, Binvert = 0 for add

BR 6/00 6

Set Logic
SLT, SLTU : output is non-zero if A < B; ALU always does a SUB
operation, SET logic will output a zero or non zero value based on
flags.

if SLT (signed comparison) then
Let Nf = sign bit of result, OF = overflag
Result (LSB) = ((not OF) and Nf) or (OF and (not Nf))
Result other bits = 0.

If SLTU (unsigned comparison) then
Result (LSB) = not(CarryFlag)
Result other bits = 0.

Note that a Set operation always produces as a result either ‘1’
(‘0001’) or ‘0’ (‘0000’).

4

BR 6/00 7

Zero Detect

Zero Detect outputs a ‘1’ if result is zero, else outputs a ‘0’.

Can be folded into SET logic if desired.

BR 6/00 8

Some Challenges

The logic I have given simply specifies in a simple manner the
functionality to be achieved.

Feel free to redesign the logic in a more efficient manner to fit
domino logic.

It will be your decision as to what will be in phase 1 and phase 2
of the domino logic block.

You are responsible for generating your 2 phase clocks.

The testbench will only provide uncomplemented inputs, you
MUST HAVE DFFS ON ALL INPUTS. You will probably
need to provide both complemented and uncomplemented inputs
to your circuits.

You must use domino logic for your logic approach.

5

BR 6/00 9

Rankings of Designs

I will rank the designs via the Power-Delay-Product (PDP). The
PDP is an accepted metric for measuring the speed-efficiency of
a design.

For a given suite of test vectors, I will measure the average
power per clock period and multiply this by clock period.
Lower PDP values are good, the design with the lowest PDP
will have a ranking of ‘1’.

You can lower your PDP by lowering your power usage and/or
by reducing the clock period.

The upper third of the class will get 25 pts added to any test
grade. The middle third will get 12 pts added to any test grade.
The lowest third gets no extra points.

BR 6/00 10

Pulsed DFF

Simple Pulsed Latch Use this design for your pulsed
DFF, there is no need for weak
cross coupled inverters on output.

6

BR 6/00 11

Static Output Latch

�2
weak

Q

Qb

Note that you have both Q and Qb available.

This means that your logic can implement either the
true or complement version of the logic.

BR 6/00 12

Debugging

Getting the clocks right is probably the most difficult
challenge. It is suggested that you make a simple 1-bit data
path like shown below to test your clocking strategy.

P
D
F
F

� � � �
L
A
T

domino buffer

Clock Gen

Gclk

�2�1�1 or Gclk?

7

BR 6/00 13

Domino Buffer

�

Clk

Clk

A Y

Y

A

BR 6/00 14

A Pitfall

Assume SET logic is clocked by �2

P
D
F
F �1 logic L

A
T

�1 or gclk
�1

2-phase
clk gen

�2

Gclk

output lat

�2

�2 logic

setop

2

setop_�1
2

A problem!
setop_�1 is only
valid during �1 . If
setup_ �1 not
consumed during
�1 , �2 overlap, then
error!

8

BR 6/00 15

How to Fix
Control lines for �2 logic should be buffered by domino buffers
unless can guarantee that control line values are consumed during
the �1 , �2 overlap period.

P
D
F
F �1 logic L

A
T

�1 or gclk
�1

2-phase
clk gen

�2

Gclk

output lat

�2

�2 logic

setop

2

setop_�1
2

�

�2

setop_�2

BR 6/00 16

Another View of the Pitfall
You may be tempted to do something like what is shown below
(a �1 gate is clocked by �1, a �2 gate is clocked by �2).

�1
gate

�1
gate

�1
gate

�2
gate

�2
gate

A

B

Note that gate B has inputs from both �1 logic and �2 logic.
This means the clock overlap period must be at least as long as
the gate delay of Gate A plus the length of time it takes for
Gate B to consume the output of Gate C.

C

9

BR 6/00 17

A Fix

�1
gate

�1
gate

�1
gate

�2
gate

�2
gate

B

Adding the domino buffer D between gates C and B now
means all gates either have all �1 inputs or all �2 inputs. The
clock overlap period only has to be long enough for gates A, D
to consume their inputs.

C
�2

D

A

BR 6/00 18

Clocking

Gclk

�1

�2

vector 1 vector 2 vector 3

result 1 result2 result 3???????

0 ps perl script reads outputs here

10

BR 6/00 19

Report
• I want to see complete transistor-level schematics for every

gate, including transistor sizes
– I do not want Cadence files – I want to see screen captures or

pictures of the schematics in your report.
• I want to see a complete schematic of the datapath at the

gate level
• You need to show me the critical path in your circuit.

– Provide data that proves this is the critical path by showing a test
vector passing, then failing the simulation because the clock period
was reduced and the test vector exercised this critical path (I don’t
need to see spice waveforms – just the clock period values, the
input test vector, and the output test vector that passed/failed.)

– For the same clock period that FAILED above because the critical
path was exercised, show a test vector that passes at this clock
period because is uses a short path.

