Fall '01 Project

- The Fall '00 project had each team design a small standard cell library for AMI 0.5u technology
 - Cadence tools to place/route the design
 - A MOSIS tinychip padframe (40 pin) was used for the IO
- W. Tan (a student from that class) took the best library from that effort, cleaned it up, and have since used it to fabricate a non-trivial design
- This library will be made available to you for this semester's project
- For Fall '01, you must do a design that combines custom layout + automated cell-based layout to create an 'interesting' VLSI system

BR 6/00

1

Test Plan

• You will probably need to surround your design with some sort of 'testbench' that will feed inputs to the design and capture outputs within the limits of the Tinychip padframe

- Tinychip has 40 pins 38 IO's, need 2 pins for Vdd/Gnd
- testbench will have to multiplex design IO to limits of tinychip padframe
- E.G., assume your design is a $16 \times 16 = 32$ multiplier that accomplishes 1 multiply per clock cycle.
 - pinout could be Vdd, Gnd, Clk, Reset, Dir, D[31:0] (37 total pins)
 - When DIR = 1, then D[31:0] are inputs and latch two 16-bit operands on rising clock edge.
 - When DIR = 0, then D[31:0] are outputs and contain the 32-bit product

BR 6/00

5

Tool Usage
 The standard cell library in Cadence format will be provided along with tutorials for producing placed/routed standard cell block Verilog netlist used to specify the design
 For custom layout, you will need to use Cadence You will probably be creating one more custom cells for your design 'Tiling' of the cells into an array can either be done manually or automated via SKIL code
 Routing between the standard cell block(s) and custom block(s) can either be automated or done manually
• Routing between the padframe and the final design can either be automated or done manually
• You must make an attempt to do full chip transistor level simulation via IRSIM as final verification (more on this later).
BR 6/00 6

Extra Points

- Extra points will be awarded if you use additional ECAD tool automation to produce your design above the minimum
 - SKIL code used to automate 'tiling' of array cells
 - Automated routing between standard cell block(s) and custom block(s)
 - Automated routing between core and padframe
- I will give you tutorials/methodology for standard cell place/route
 - To do the above 'extra' automation, you will have to read the Cadence documentation on your own and do experimentation.
- Project counts as 3rd test.

BR 6/00

7

Simulations You must provide a gate level Verilog simulation of your COMPLETE chip (testbench + design) - Will provide Verilog models of standard cells - You will have to write Verilog models of any custom cells that you design (I can help in this, it is not hard). - This simulation is for functional verification only, not timing verification Once the layout is complete, you must provide a chip-level through-pad transistor-level simulation via IRSIM - IRSIM is switch-level simulator that works from an extracted transistor level netlist of the layout - Useful for finding fatal bugs like missing routes - Will talk about this later, you should practice IRSIM simulation on your custom cells first. Project is due at midnight on Sunday, December 2nd. BR 6/00 8

