Alpha CPU and Clock Design Evolution

- This lecture uses two papers that discuss the evolution of the Alpha CPU and clocking strategy over three CPU generations
 - Gronowski, Paul E., et.al., "High Performance Microprocessor Design", *IEEE Journal of Solid-State Circuits*, Vol. 33, No. 5, May 1998, pp. 676-686
 - Bailey, Daniel W. and Bradley J. Benschneider, "Clocking Design and Analysis for a 600-Mhz Alpha Microprocessor", *IEEE Journal* of Solid-State Circuits, Vol. 33, No. 11, November 1998, pp. 1627-1633
- These papers are interesting because one can see how shrinking device sizes presented new design challenges that forced design methodology changes.
- · All notes in this lecture are from these two papers.

BR 6/00

- Both 21064, 21164 used a single global clk distributed by a
- Skew is largely determined by grid interconnect density and is insensitive to gate load placement
 - Why? Because capacitance of grid wiring dominates the gate loads
- · Universal availability of clock signals
- Design teams can proceed in parallel since clock constraints
- Good process-variation tolerance
- The disadvantage is the extra capacitance of the grid
 - Power-performance tradeoff is determined by choice of skew target, which establishes the needed grid density, which determines the clock

BR 6/00

10

21264 Clock Distribution · 21264 clocking fundamentally different from previous Alphas because it supported a hierarchy of clocks

- Still had a GCLK (global Clk) grid, but conditional and local clocks had several buffer stages after GCLK
- · Conditional clocks used to save power - Clocks gated to functional units in design - If not executing a floating point instruction, then stop the clock to the
 - floating point unit to save power! State elements and clocking points were 0 to 8 gates past
- Gclk Six major regional clocks two gain stages past GCLK with grids juxaposed with GCLK, but shielded from it.
- Major clocks drive local clocks and conditional clocks
- Goals were to improve performance, reduce power.

BR 6/00

11

Major Clock	Area	
CCLK	bus interface unit	Major clocks are two inversions past GCLK
ECLK	integer issue and execution units	
FCLK	floating point issue and execution uni	
JCLK	instruction fetch and branch prediction unit	
MCLK	load/store unit	
PCLK	pad ring	
Major clock	s saved power over a single	alobal clocks because

Gclk+Major clocks used 24 W @ 2.2 V, 600 Mhz. It is estimated that at least 40W would have been required if only global clocks were used. 10%-90% rise/fall times were targeted at < 320 ps. $_{\rm BR\,600}$

BR 6/00

