
1

BR 6/00 1

ECAD Tool Flows

• These notes are taken from the book:
It’s The Methodology, Stupid! by Pran Kurup, Taher
Abbasi, Ricky Bedi, Publisher ByteK Designs, (
http://www.bytekinc.com (now a defunct link)

• A tool flow describes the method and order (the
methodology) in tools are used produce a design
– Different companies can take the same collection of tools and use a

different methodology to produce an IC
– Typically, companies will add their own in-house tools to the off-

the-shelf tools to tailor the tool flow to their particular needs
– An ECAD group is usually responsible for designing and

maintaining the methodology – they are also responsible for
training others in the use of this methodology.

BR 6/00 2

An ASIC Flow

Functional Specifications

RTL Coding

Behavioral Simulation

Logic Synthesis

Statistical Wire
load models for
constraints

ASIC – Application
Specific Integrated
Circuit
ATPG – Automated
Test Pattern
Generation

Test Insertion/ATPG

2

BR 6/00 3

An ASIC Flow (cont)

Test Insertion/ATPG

Gate-level Netlist Simulation

Floor-Planning

Placement & Route

IPO/Physical
Hierarchy

IPO – In Place Optimization

BR 6/00 4

“Timing Closure”

• “Timing Closure” refers to producing a design that meets
timing specifications
– Want to verify that your design has timing closure before you

fabricate

• The problem is that with deep submicron, the parasitics
(R,L,C) of the physical layout greatly affect timing

• This leads to the need to produce layout, extract parasitics
from the layout, ‘back-annotate’ the parasitics into your
timing verification methodology, and then modify
logic/layout in order to meet timing specifications and
achieve timing closure

3

BR 6/00 5

The Hell of IterationLogic Synthesis

Placement & Route

Parasitic Extraction

Back Annotation
Files (I.e., SDF)

Timing Verification
(static timing analysis, gate level simulation

Meets timing?
No

Yes
LVS, DRC, Tapeout

In-Place Optimization,
Incremental Synthesis

Incremental Place/Route

BR 6/00 6

Loop through P&R is Time Consuming
• In-Place Optimization essentially means to tweak transistor sizes

without moving cells around
– Moving cells around requires routing to be modifed

• If you have to move cells or change the netlist such that different cells
are used, then would like to do it in a local area so that you do not have
go through the entire Place/Route process again

– Incremental Place/Route tries to accomplish this
• Incremental synthesis means to read in the gate level netlist, and

modify the netlist incrementally in order to meet failed timing
constraints

– Does NOT START with RTL, starts with gate level netlist produced by
first synthesis pass

– Goal is to change as few as gates as possible, and then use incremental
place/route to change the layout.

4

BR 6/00 7

Behavioral HDL

RTL

Gate-Level

Physical
Domain

Layout vs.
Schematic (LVS)

Hardware
Accelerators

Static Timing
Analysis

Gate Level
Simulators

Code Coverage

System Simulators

HDL Simulators

Verification Methodology

BR 6/00 8

Testbench Simulation

Behavorial

RTL

Gate Level
(post Synthesis,

pre-layout)

Gate Level
(post Synthesis,

post-layout)
Goal is to use same testbench for all
levels of simulation abstraction, and mix
different levels

5

BR 6/00 9

Logic Simulators

HDL-Based
(Verilog, VHDL)

Hardware Schematic-based

Gate-Sim System

DSP Apps,
Tools:

Matlab,
SPW,

COASSAP

Obsolete

FPGA
based from
Quickturn,

IKOS

Event-Driven Cycle-Based

New technology:
Speedsim, IKOS,

Cobra

Interpreted Code

Verilog-XL
Modelsim

Compiled Code

Leapfrog,
NC-Verilog,

Spec-C,
SystemC

HW
Accel

IKOS

BR 6/00 10

Comments on Logic Simulators

• Hardware Emulators usually FPGA-based, used to test
functionality of design (can’t simulate at speed)
– Very expensive, used because 10x-100x faster than software

simulation
• Hardware Acceleration usually means parallel execution of

VHDL/Verilog/C/C++
• Push towards using C/C++ as simulation language

– Compiled code can be faster than VHDL/Verilog simulators
– VHDL/Verilog usually compiled to a ‘byte code’ form, then byte

code is interpreted
– Some simulators will convert Verilog/VHDL to C/C++, then

compile for extra speed.
• Cycle-based simulations do not compute what is going on

inside of a clock, just results from clock-to-clock
– This is a higher level of abstraction, code can be written in either

VHDL/Verilog or C/C++

6

BR 6/00 11

Formal Verification

• Formal Verification means that mathematical techniques to
prove that the hardware is correct as it progresses from one
abstraction level to another (Behavioral to RTL to Gate-
level to Physical), etc.

• Attraction is that circuit does not have to be simulated – no
need for test vector generation
– Generation of test vectors, simulation/checking of vectors time

consuming
– Test vectors may not cover all possible cases

• Formal Verification is difficult, very much a research area
• Is currently a ‘hot’ area for tool development

BR 6/00 12

Formal Verification Categories
• Equivalence Checking – most widely used, easiest

– Use a mathematical approach to compare a reference design to a
revised design (do two netlists implement the same boolean function?)

– Reference design must be correct

• Model Checking – a research area
– Compare a design implementation against a set of properties (the

model) that defines the behavior
– Properties define the specifications of the design
– Incorporates elements of Equivalence checking but goes beyond this

• Theorem Proving – most advanced
– Formally prove two designs are correct
– Designs must be represented in a ‘formal’ specification language that

incorporates the specifications of the design in additon to the behavior
– VHDL/Verilog does not include this though extensions have been

proposed.

7

BR 6/00 13

Static Timing vs. Full Simulation Timing
• Static timing traces paths in the design, computes delays

along the paths, and checks if delay constraints met
– No need for vector generation
– Cannot detect glitches, timing failure due to dynamic behavior

(such as charge sharing problems)
– Static analysis used to direct synthesis optimization – synthesis

tools computes delay paths and tries to produce netlists that meet
constraints

– Setup time violations checked for with ‘slow corner’ timing library
– Hold time violations checked for with ‘fast corner’ timing library

• Full Simulation timing is time consuming, requires test
vector generation, but only way to detect dynamic timing
faults

BR 6/00 14

Timing-Driven Layout

• One way to reduce time spent in timing closure iteration is
to have a Place/Route tool capable of timing-driven layout

• During Place/Route, tool uses timing constraints to driven
generation of layout (primarily routing)
– Must be able to accurately estimate wire delays during place/route

procedure
– Goal is to produce layouts that meet timing constraints so that

iterations through physical layout are minimized

• Most modern P/R tools support timing driven layout

8

BR 6/00 15

RTL

Logic Synthesis

Test Synthesis

Placement

Back Annotation

Incremental Synthesis

Clock Tree Insertion &
Routing

Parasitic Extraction
& Back Annotation

High Level Logic
Synthesis Flow

BR 6/00 16

Constraints HDL Technology

Test Ready Synthesis

Pre-Scan Test DRC

Scan Insertion

Post Scan Test DRC

JTAG/IO Pads Synth

SDF Path Constraints

Floorplanning (Placement)

SDF, PDEF, set_loadsPhysical Info based
Synthesis (Inc. Syn)

Parasitic
Extraction

Clock Tree Synthesis/Routing

Logic synthesis

test synthesis

Detailed Logic
Synthesis Flow

9

BR 6/00 17

Logic Synthesis Constraints
• Synthesis driven by constraints
• Timing Constraints

– Clock period, setup time, hold time constraint

• Area constraints
• Power Constraints

– Gate choices can definitely affect power consumption
– Logic synthesis can generate gating that minimizes the number of

transitions during operation

• Design Rule Constraints
– Maximum loading on outputs
– Maximum transition time on outputs

BR 6/00 18

File Formats

Industry standard format for
physical cluster and placement
information (initiated by Synopsys)

Physical Design
Exchange Format

PDEF

Industry standard format giving pin
to pin delays

Standard Delay FormatSDF

Industry standard formatStandard Parasitic
Exchange Format

SPEF

Format developed by CadenceDesign Exchange FormatDEF

Format developed by CadenceLibrary Exchange Format
Parametric LEF

LEF
PLEF

DescriptionExpansionFile

SDF files can be read by Synopsys – contains both gate delays
and interconnect delays. SDF can also be generated by
Synopsys. VHDL/Verilog simulators can also use SDF.

10

BR 6/00 19

Header Information

Min:Typical:Max

Rising Delays Falling Delays

Delay from input pin to output pin

BR 6/00 20

Setup/Hold constraints

Interconnect Delays

11

BR 6/00 21

PDEF – Physical Design Exchange Format
• Would like to exchange clustering information between

front end tools (logic synthesis - Design Compiler) and
back end tools (physical layout)
– ‘clustering’ means that the layout tool needs to place a group of

cells (a cluster) close together because they are related
– This will hopefully minimize routing delays between these cells

BR 6/00 22

Cluster Definition

12

BR 6/00 23

Info in logic synthesis
tool

Placement by
floorplanner

BR 6/00 24

Standard Parasitic Exchange Format (SPEF)

• Exchange parasitics between layout tools and delay
calculators - delay calculators use parasitics to produce
SDF files

13

BR 6/00 25

LEF files describe
physical information for
layout libraries – used
by external place/route
tools

Header contains
information for
technology (layers,
spacing, etc).

Macro statements define
each cell (pins and
obstructions – timing
info needed for timing
driven layout)

BR 6/00 26

DEF files contains final
placed/routed design

Produced by Silicon
Ensemble after
placement/routing,
imported back into
Cadence layout editor
(Virtuoso).

Contains physical
information for routes, pin
placement, cell placement

