

	Tau	Pinv	Pnand2	Pnand4
old	8.4	6.6	11	23
new	9.6	5.7	12	30
	nces mainly due values in Decode		1 0	•

Logica	Logical Effort of Nand2, Nand4					
	Nand2 g	Nand4 g				
Book	1.33	2				
Measured	1.6	2.2				
Measurea	1.0	۲.۲				
	BR 6/00		6			

Template Circuit

A template circuit is chosen as the basis upon which other gates are scaled. The scaling factor is α .

Ct is the input cap of the template.

Rt is the pullup or pulldown resistance of the template. Cpt is the parasitic capacitance of the template.

 $Cin = \alpha * Ct$ Ri = Rui = Rdi = Rt / α Cpi = $\alpha * Cpt$

BR 6/00

9

RC Delay $Dabs = \kappa Ri (Cout + Cpi)$ $= \kappa (Rt/\alpha) Cin (Cout/Cin) + \kappa (Rt/\alpha) (\alpha Cpt)$ $= (\kappa \operatorname{Rt} \operatorname{Ct}) (\operatorname{Cout}/\operatorname{Cin}) + \kappa \operatorname{Rt} \operatorname{Cpt}$ Written in this form, can see relation to logical effort model: $Dabs = \tau (gh + p)$ $\tau = \kappa \operatorname{Rinv} \operatorname{Cinv}$ (previous definition) g = (Rt Ct)/(Rinv Cinv)Note: if template = 1X inverter, then g = 1 !!!!h = Cout/Cinp = (Rt Cpt)/(Rinv Cinv)Note: book value of Pinv = 1only true if Cpt = Cinv!! BR 6/00 10

	Resi	ılts	
Dynamic	Meas (Tplh)	Predicted	
Two Stage	518.0	392.8	
Four Stage	488.0	351.7	
Static	Meas (Tavg)		
two stage	634.0	416.6	
Three Stage	547.0	345.6	
Four Stage	562.0	372.5	
Leffort correctly pr capture all of the sp implementation. D	redicted relative n beedup that will o	nagnitudes. Leffort d	
stages than static.	BR 6/0		2

