Spectre Tutorial

- · Spectre will be used for transistor level simulation
- · To place on path,do: 'swsetup cadence-ncsu'
- · Use online help or PDF docs at ~reese/cadence docs
- Documentation
 - Spectre User Manual most helpful for first time users
 - Spectre Reference Manual details on all available statements
 - Verilog-A Reference Manual details on Verilog-A language
 - Spectre HDL details Spectre HDL, a proprietary HDL. Has been largely replaced by standard languages such as Verilog-A. However, Analog library model detailed in Verilog-A reference manual is written in Spectre HDL

BR 8/02

More Docs

- Appendix D of Verilog-A reference gives a pre-defined library of Analog Component library
- Source code for these models are at: <code>/opt/ecad/cadence/v4.45/ic_4.45qsr2/tools/dfII/samples/artist/ahdlLib/</code>

For model details, look at source code for a model under: *model_name/ahdl/ahdl.def* (e.g., delta_probe/ahdl/ahdl.def)

Note: These models are written in Spectre HDL.

BR 8/02

2

Spectre

- Spectre accepts either SPICE or Spectre syntax
 Spectre syntax less restrictive than SPICE (I.e., in Spectre syntax, element
 - names do not have to start with a particular letter)
 - In my files, will mix SPICE and Spectre syntax freely just because I am used to SPICE
- · The 'awd' program is used to view waveforms
- A powerful waveform viewer, but can take many button clicks to produce a value from a waveform. It is better to use HDL models for signal measurement purposes.
- Verilog-A is an extension of Verilog that supports analog concepts such as Voltage, Current
 - Verilog-A can be called like sub-circuits from Spectre files
 - I will use Verilog-A for things like measurements because it is easier, faster than popping up a waveform viewer. Will use waveform viewer for debugging.

3

Predefined models in Affirma Analog Library are written in SpectreHDL

BR 8/02

Spectre Example Files

- · BSIM3V3 Model files from http://mosis.com
 - ami06.m for AMI 0.6u process
 - tsmc025.m for TSMC 0.25 process
 - tsmc018.m for TSMC 0.18 process
 - Transistor model names are 'N', 'P'.
- · Parameters lmin, wmin have been added to files:
 - Lmin minimum channel length
 - Wmin minimum gate width
 - Specify L,W parameters for transistors in terms of these parameters and your designs can be tested with different processes.

BR 8/02

pmeas.va, delta_probe.def

- *pmeas.va* is a Verilog-A model that implements a power supply that reports average power usage
 - Included by *power_dly.sp* which is the top level Spice file
- *delta_probe.def* is a Spectre HDL model that implements a probe for measuring delay between two events
 - Included by *power_dly.sp* which is the top level Spice file
 - Provided in the sample Analog HDL model library in the Cadence distribution
 - A very flexible model, look at the source code for more documentation or Appendix D in the Verilog-A language reference guide. Very similar in capability to the HSPICE '.measure' statement if you are used to that.

7

BR 8/02

Parameter Definitions	
parameters vdd_core=3.3 vss_core=0.0	
parameters tr=.1n tf=.1n parameters cload=15f	
parameters pdelta=0.05n	
parameters clkper=4n	
parameters pwrstop=10*clkper	
Should use parameter definitions for constant values – makes it easier to experiment with different values.	
BR 8/02 9	

Sources, Circuit Ins	tantiation
v_vdd (vdd gnd) vsource type=dc dc=vdd_cor	Default power supply
vpulse1 (a gnd) vsource type=pulse val0=vs val1=vdd_core period=clkper rise=tr fal1=t	
Driver (a a_out vdd gnd) INVX1	Clock source for input node.
Dut (a_out vdd nand2_out vdd_dut gnd) NANE Load nand2_out nand2_outl vdd gnd) INVX4	2X1
Instantiate <i>driver</i> , <i>dut</i> , and <i>load</i> cells. N separate power supply (defined later in the separate power supply)	
BR 8/02	11

Power,	Delay Measurement	
ahdl_include "pmeas.va"	 Verilog-A model for power sup model 	ply
Pmtr (vdd_dut) pmeas vsrc=vd	d_core deltatime=pdelta period=clkp	er
Instantia	te power supply, will report avg pw	r used
// delay measurement	· · · · · · · ·	
ahdl_include "delta_probe.de	£"	
dut_tplh (a_out 0 nand2_out	0) delta_probe start_val=0.7*vdd_co	re \
start_mode=fall stop_val=0.3	*vdd_core stop_mode=rise	
dut_tphl (a_out 0 nand2_out	0) delta_probe start_val=0.3*vdd_co	re \
start_mode=rise stop_val=0.7	*vdd_core stop_mode=fall	
	to measure delay between two obes to measure tplh, tphl of DUT	
(input 'a_out' to output 'na	and2_out').]
	BR 8/02	12

General Notes on Simulation

- Use waveform display for debugging, use probes, models for measuring values
 - Much faster, repeatable
 Ouestion your results ie, if your re
- Question your results .ie, if you get a power in 10's of watts or delay in microseconds, something is probably wrong.
- In reports, don't use more than 3 significant digits. Providing an answer like 67.0332459 is meaningless.
- Do not wait until the last minute most simulation assignments will take multiple tries.

BR 8/02

23