
1

11/14/00 1

Routing

• Automatic Place/Route of systems blocks is integral
design of modern VLSI devices
⇒Cell Libraries and macro blocks need to be designed with

system level routing issues in mind

• Typically, design macro blocks to use as few routing
layers as possible so that higher level routing can go
completely over-the-top of the block for inter-block
routing.
⇒Not unusual for a macro block to only use local interconnect

(silicided poly) and MET1; this reserves MET2 and higher
for inter-block routing.

11/14/00 2

Standard Cell Design and Routing

• Standard cell implementations use a library of standard
cells that implement basic logic functions.

• Standard cells share the same height, and the
placement tool creates rows of cells, each cell abutting
with its neighbor
⇒power connections between cells formed by abuttment

• The router creates connections by routing in available
metal layers
⇒Routing can be over the top of the cell or in channels

between rows

2

11/14/00 3

Routing

• Routers typically prefer that the pins of cells lie on
some grid for routing efficiency purposes
⇒Routers can usually route to off grid pins but requires more

execution time and memory.

• Grids are defined for each routing layer
⇒Grid spacing should be at least line-on-via, and is usually

via-on-via

• A HVH routing styles means that there are three
layers; with the first layer running horizontally, 2nd
vertically, 3rd horizontally (M1 H, M2 V, M3 H)

11/14/00 4

Cadence Standard Cell P&R Particulars

• We will use a tool called Silicon Ensemble for
standard cell placement and routing

• Requirements
⇒Pins should align at a grid point (aligned with both vertical

and horizontal grids)

⇒Rows are placed to align with vertical and horizontal routing
grids

⇒Cell height should be multiple of Horizontal grid
→If multiple horizontal grids (i.e, HVH), then cell height should a

common multiple of the grid spacing. If the M1 grid spacing is 6
lambda, and the M3 grid spacing is 8 lambda, then cell height should
be an multiple of both 6 and 8 (ie., 24 lambda, 48 lambda, etc)

→For this reason, the ratio of M1 to M3 grid spacing should be kept
simple (i.e 1:1, 2:1, NOT 11:7)

3

11/14/00 5

Cadence Standard Cell P&R Particulars

• Alternate rows can be flipped vertically so that powers
rails of neighboring rows can abut

Vdd rail

Gnd rail
Gnd rail
Vdd rail
Vdd rail
Gnd rail
Gnd rail
Vdd rail

• Cells can be flipped horizontally to reduce routing
lengths.

11/14/00 6

Metal Spacing Grids

Line on Line Line on Via

min spacing, can’t
fit another via here

Via on Via

min spacing

4

11/14/00 7

Routing Grid for HP14TB process (λ = 0.3u)

• Minimum Spacings are:
⇒Via on Via horizontal (via width + M1 spacing) = 4 + 3 =7

lambda

⇒Via on Via vertical (via width + M2 spacing) = 4 +3 = 7
lambda

⇒Via2 on Via2 horizontal (via width + M3 spacing) = 6 + 3 =
9 lambda

• Using minimum spacings give a M1:M3 ratio of 7:9
⇒Odd ratio, Cadence recommends that in this case M1 and

M3 grids should be the same (i.e, 1:1 ratio).

11/14/00 8

Standard Cell Guidelines

• Will be conservative and use vertical routing grid of 8
lambda
⇒Cell widths must be multiple of vertical routing grid (16, 24,

32, etc).

⇒First vertical routing track will start at one-half vertical grid
inside of cell

→First valid terminal location is one-half vertical grid into cell.

• Will use horizontal routing grid of 9 lambda
⇒Cell heights must be multiple of horizontal routing grid

5

11/14/00 9

What should Cell Height be?

• When routing was limited to just two layers of metal,
wanted short cells
⇒Routing was M1 horizonal, M2 vertical

⇒Most of the routing was done in the channels between cell
rows

⇒Short cells minimized Row to Row spacing

• With over the cell routing (HVH), tall cells now slide
under the routing, and channels have disappeared.
⇒Taller cells allow for multiple drive strength cells which is

important for modern synthesis tools.

11/14/00 10

Cell Heights we have used

• SCMOS library (0.8u, 1.2 u library)
⇒ 68 lambda - designed for 2 layer routing, cell height was

kept small

• GCMOS library (0.5u)
⇒ 100 lambda - designed for 3 layer routing, wanted multiple

drive strengths

• RadTolerant Library (0.5u)
⇒ 150 lambda - required guard rings around PMOS, NMOS

transistor sites which pushed cell height up

6

11/14/00 11

A Routing Comparison

• For the GCMOS library (100 lambda) and
RadTolerant library(150 lambda), did a P&R for a
1932 cell design
⇒GCMOS area : 1591 x 813 u = 1293483 u**2
⇒RadTol area: 1716 x 938 = 1609608 u**2
⇒ Area Ratio of 1.2 (RadTol/ GCMOS) – routing limited
⇒ Cell Height Ratio RadTol/GCMOS = 1.5

• For a smaller design (325 cells), the area was:
⇒GCMOS: 619 x 385 = 238315
⇒RadTol: 806 x 464 = 373984
⇒Ratio of 1.6 (RadTol/GCMOS) – cell area limited

11/14/00 12

Standard Cell Template

• Vdd/Gnd Rail width rule of thumb is 5x minimum
width
⇒ 15 lambda

• Sample Cell library provided with Cadence had cell
heights that provided 9 horizontal routing tracks
⇒We will be somewhat conservative and use a cell height that

gives 11 horizontal routing tracks (99 lambda).

• Transistor areas should be positioned so that routing
tracks in middle of cell are free

7

11/14/00 13

Standard Cell Routing Template (cont)

4λ 8 λ 8 λ 8 λ 8 λ

9 λ

9 λ

9 λ

Valid terminal locations
are at grid intersections. If
possible, terminals should
staggered horizontally.
This allows easier
horizontal routing access.

Can also designate
multiple entry points via
metal 1 to a terminal
along the veritical
direction

4λ

9 λ

9 λ

9 λ

A

B

C

11/14/00 14

Standard Cell layout guidelines
• Orgin of cell at 0,0 in lower left hand corner
• Cell width multiple of 8 lambda, height is 99 lambda
• Vdd/Gnd rails 15 lambda wide, start at 1.5 lambda

vertical spacing inside cell boundary
⇒This way, if router does not support flipping rows, then cells

can be abutted vertically without DRVs

• PTAP, NTAP contacts under power rails
• Cells can be abutted horizontally without DRV’s.
• Grow transistors from cell bottom towards cell center

⇒Use poly routing wherever possible, limit to 30-45 um
⇒If have to block horizontal MET1 route, block from one side

only

8

11/14/00 15

cell boundary, horizontal abutment GND

Vdd

m3(H)

m2(V)

m1(H)

cell
boundary,
veritical
abutment

Routing example with library from SE tutorial

11/14/00 16

Detailed Routing grids shown. Note that some
routes are off grid (off grid routing allowed by SE)

off
grid

off
grid

off
grid

9

11/14/00 17

Global Net routing (Clock, Reset)
Tanner Standard Cell libraries for Leda 0.35, 0.25 processes
available from MOSIS specify Clock, reset line routing in Standard
Cell Template.

Clk Line

Clk Line

11/14/00 18

Clock Buffer Cells
Buffer clock left

Clk_in

Comes in on
M2

Clk

Gate of 1st

inverter

Gate of 2nd

inverter

10

11/14/00 19

Abutment of clock buffer cells

Clk_in

Multiple clock
buffers inserted in
row can give
arbitrary drive
strenght

Clk

11/14/00 20

Latch Cell

Does not tie into clock routing, this must be
done via external router

M2 usage in
cell always
runs vertically
so as to block
fewest routing
channels.

11

11/14/00 21

If you want to try out Cadence

• Grab cds.lib, display.drf from ‘misc links’ off WWW
page.

• ‘swsetup cadence’ to place tools on path
• Make a temp directory, change into it, and execute:

⇒ % icfb &
⇒The ‘Help’ button on the menu will access the online help
⇒ Use the ‘Go -> Main Menu’ to get to list of all documents
⇒Choose ‘IC tools’

→Layout Design -> Cell Design Tutorial (manual layout tutorial)
→Place and Route -> Silicon Ensemble Tutorial (Stdcell)
→Layout Design -> Virtuso Layout Synthesizer Tutorial

11/14/00 22

Arbiter Examples

• ZIP archive attached to this lecture has three examples
of using ‘sedsm’ (Silicon Ensemble, Deep sub-micron)

• Example uses a design called ‘arbiter’ that is about
300 cells mapped to the example library provided with
the SE tutorial (synopsys synthesis lib sc_cadence.lib)
⇒ arbiter_pads -- places pads along with the standard cell

core
⇒arbiter_nopads_reese – standard cell core only, pins routed

to edges
⇒arbiter_nopads_scott – example provided by Scott Jennings

than only routes the standard cell core. Uses a difference set
of sedsm commands than ‘reese’ example.

12

11/14/00 23

sedsm

verilog netlist file for
design

verilog description of
library cells

Library ‘.lef’
description

exported from
Cadence layout

views

Final placed/routed design
(binary file *.dhd format)
(ascii file *.def format)

*.def placed/routed design file is then imported
back into Virtuoso Layout tool

11/14/00 24

sedsm

arbiter.v
libcells.v

sc_cadence.lef

Final placed/routed design
(binary file *.dhd format)
(ascii file *.def format)

*.def placed/routed design file is then imported
back into Virtuoso Layout tool

13

11/14/00 25

Running sedsm

sedsm can be run in interactive mode (as in tutorial) or in
automated mode via script file

To run a script file do:

% sedsm –m=200 –b –gd=ansi “EXECUTE script.mac;” &

Example command files for sedsm have a .mac extension

To run in interactive mode do:

% sedsm

11/14/00 26

Generating Input files for sedsm

• Verilog netlist file of design generated by Synopsys

• Library verilog file simply has a verilog description of
each library cell
⇒ look at libcells.v in ZIP archive for an example.

• The LEF (library exchange format) file is the most
important file and the most difficult to generate
⇒ Contains the spacing rules (metal, VIAs) for your

technology

⇒Contains a cell abstract for each cell in your library

⇒the LEF file is created via the ‘export’ option under icfb

14

11/14/00 27

Cell abstracts
• The LEF abstract of your cell does not contain all of the

layout of your cell
⇒It simply contains the layers/vias that are important from a

routing point of view

• The layout view of your cell (in Virtuoso) contains the
detailed layout of your design

• The abstract view of your cell (in Virtuoso) contains
only the routing obstructions, pins of your cell
⇒Abstracts can be generated automatically from a layout view

by a tool called autoabgen. Abstract views generated by
autoabgen may need to be tweaked a bit before exporting to a
LEF file.

⇒Abstracts can also be generated manually, simply more work
to do it

