
1

BR 6/00 1

Synopsys

• Will be used to synthesize RTL VHDL/Verilog to Verilog
netlists

• ‘swsetup synopsys’ to place binaries on path

• Online documentation is all PDF
/opt/ecad/synopsys/default/doc/online

• doc/online/library -- library compiler documentation

• doc/online/synth – synthesis tools compiler
– doc/online/synth/dcug - design compiler user guide

– doc/online/synth/dctut – design compiler tutorial

– doc/online/synth/dcrm – design compiler reference manual

BR 6/00 2

Library File

• To synthesize an RTL Verilog/VHDL file to a netlist, need
two input files:
– The RTL file itself

– A compiled library file (mylib.db). The .db format is a binary
format used by Synopsys for compiled designs/libraries

• The library file specifies what cells are in your library,
their functions, pin names, timing/power characteristics
– The ASCII form of the library is usually has a ‘.lib’ extension.

– The attached zip file has two sample libraries in it

– More examples of libraries are under
/opt/ecad/synopsys/default/libraries/syn/lsi_10k.lib

2

BR 6/00 3

.lib to .db Format

Before a library can be used, it must be compiled. The
dc_shell program is a command line interface to Synopsys
synthesis.

To compile a .lib file to .db format, do (i.e., sc_cadence.lib to
sc_cadence.db)

% dc_shell

dc_shell > read_lib sc_cadence.lib

dc_shell > write_lib sc_cadence

dc_shell > quit

%

BR 6/00 4

dc_shell scripts

• The most common usage of dc_shell is to give it a script
file with dc_shell commands:

% dc_shell -f scriptfile

• The commands on the previous slide could be placed in a
file called ‘makelib.script’:

read_lib sc_cadence.lib
write_lib sc_cadence
quit

• To compile the library via the script, do:
% dc_shell -f makelib.script

3

BR 6/00 5

RTL to Netlist of gates

dc_shell is also used to synthesize an RTL description to a
netlist of gates. A sample script file is shown below:

link_library=target_library={sc_cadence.db}
read -f vhdl rtl/arbiter.vhd
dont_touch_network clk
compile -ungroup_all
write -f verilog -output gate/arbiter_cadence.v
quit

This script reads a VHDL file called ‘rtl/arbiter.vhd’,
synthesizes it to the sc_cadence library, and writes the
resulting gate-level netlist out as a verilog file.

The ‘dont_touch_network clk’ statement prevents buffers
from being placed on the clock network. No synthesis
constraints are specified, so minimum area is used.

BR 6/00 6

Minimum Delay Constraint

link_library=target_library={sc_cadence.db}
read -f vhdl rtl/arbiter.vhd
dont_touch_network clk
max_delay 0.1 –from all_registers(-clock_pins) -to all_registers(-data_pins)
compile -ungroup_all
write -f verilog -output gate/arbiter_cadence.v
report_timing –path short –delay max –from all_registers(-clock_pins)

–to all_registers(-data_pins) –max_paths 3 –nworst 1
quit

max_delay command used to set timing constratint. Here we
are minimizing the register to register delay.

report_timing command used to report delays along selected
paths.

4

BR 6/00 7

Minimum Delay/ Max Fanout Constraints

link_library=target_library={sc_cadence.db}
read -f vhdl rtl/arbiter.vhd
dont_touch_network clk
max_delay 0.1 –from all_registers(-clock_pins) -to all_registers(-data_pins)
compile -ungroup_all
dont_touch_network clk
set_max_fanout 8.0 find(design, arbiter)
max_delay 0.1 –from all_registers(-clock_pins) -to all_registers(-data_pins)
compile –incremental_mapping
write -f verilog -output gate/arbiter_cadence.v
report_timing –path short –delay max –from all_registers(-clock_pins)

–to all_registers(-data_pins) –max_paths 3 –nworst 1
quit

Two step process. Units of max_fanout are whatever ‘load units’
were specified in the library file. -incremental_mapping used to
not repeat entire synthesis process.

BR 6/00 8

Inserting IO Pads

For a complete chip design (and not just a standard cell block), I/O
pads have to placed on the ‘pins’. This can be done by reading the
gate-level netlist, and using the ‘insert_pads’ command:

link_library=target_library={sc_cadence.db}
read -f verilog gate/arbiter_cadence.v
set_port_is_pad {clk reset breq bgrant bbusy}
insert_pads
verilogout_single_bit = true
write -f verilog -output gate/arbiterTop.v
quit

Requires that you have ‘pad’ cells in your library.
verilogout_single_bit variable used to write busses out as
individual signals in top level netlist interface.

5

BR 6/00 9

Help information within dc_shell

• From within dc_shell can do:

dc_shell> help command

and will list help on that particular command.

BR 6/00 10

Library File

The library definition file (i.e., sc_cadence.lib) is broken into two
sections: a header section that defines attributes to be used by all
cells in the library, and cell section that has a definition for each
cell in the library.

A cell’s definition defines attributes about the cell such as pin
names, area, functionality, timing, power, etc.

The following slides contains some examples from .lib files.

6

BR 6/00 11

Cell Functionality – and2

cell (and2) {
area : 434.7;
pin(A1) {
direction : input;
capacitance : 2.141;

}
pin(B1) {
direction : input;
capacitance : 1.948;

}
pin(O) {
direction : output;
function : "A1 * B1";
}

}

Timing has
been removed
from this
example.

input pin
capacitance

output pin
function

pin type

BR 6/00 12

Cell Functionality – nand2

cell (nand2_4) {
area : 359.1;
pin(A1) {

direction : input;
capacitance : 12.547;

}
pin(B1) {
direction : input;
capacitance : 12.259;

}
pin(O) {
direction : output;
function : "(A1 * B1)’";

}
}

Single quote
used for
inversion

Timing has
been removed
from this
example.

7

BR 6/00 13

Cell Functionality - DFF
cell (dfr) {

area : 4819.5;
ff(IQ,IQN) {

next_state : "DATA1";
clocked_on : "CLK2’";
clear : "RST3’";

}
pin(DATA1) {

direction : input;
capacitance : 51.289;

}
pin(CLK2) {

direction : input;
capacitance : 52.305;

}
pin(RST3) {

direction : input;
capacitance : 28.602;

}
pin(Q) {

direction : output;
function : "IQ";

}

Inversion on clock, falling
edge triggerred.

Inversion on reset, low
true reset.

BR 6/00 14

Hints on naming cells/pins

• Netlist produced by Synopsys may go through many
different CAD tools on the way to silicon
– Naming conventions between CAD tool differ, so need to be

conservative in naming conventions

• Use all lower case
– some CAD tools will accept mixed case, some will not.

• Do not use special symbols except for underscores
• Start with alpha character (a-z) as first character
• Keep names short, simple
• For pin names, do not end with a numeric, end with an

alpha
– some CAD tools will use an ending numeric value as a bus index

• Be consistent between cells

8

BR 6/00 15

Synopsys Timing Models

• Synopsys supports multiple timing models

• Example libs in .zip file use lookup table approach based on
input slope, output capacitive load
– This is known as the non-linear CMOS delay model, documentation is

found in doc/online/library/lcug2 (look at toc.pdf first).

• Examples under Synopsys installation directories use RC
delay approach.

BR 6/00 16

Nonlinear Delay Model

• Two components to delay (Dtotal)
– Dcell (delay due to cell itself)

– Dconnect (delay due to interconnect)

• In this project will ignore the Dconnect term (it will be
zero if we do not explicity specify a value for it).

• In computing the Dcell (Cell delay), can do this in two
ways
– As a sum of two delays: propagation time + transistion time.

Both values are found from lookup tables.

– As a single delay (cell_rise, cell_fall) read from a lookup table

– Both delay models also compute an output transistion time for a
signal in addition to delay.

• These slides will discuss the ‘single delay’ model.

9

BR 6/00 17

Two Dimensional Lookup Table Template

The non-linear CMOS model can use a 1-D, 2-D, or 3-D
lookup table. For 2-D tables, one axis must always be input
transistion time, the 2nd axis can be different choices, one of
which is output net total capacitance load.

Need to define a template that will be used to hold our lookup
table data. The general form is:

BR 6/00 18

Lookup Table Template Example

lu_table_template(t4x3) {
variable_1: total_output_net_capacitance ;
variable_2: input_net_transistion ;
index_1 {“5, 20, 60, 200”} ;
index_2 {“0.01, 0.1, 2.0”} ;

}

The units of a table can be anything that you desire as long as
your data is consistent with those units. Typical units for
capacitance is fF, any time units can be used for input
transistion time (ps or ns typically).

The above template represents a lookup table with 12 entries.
For each cell delay data table, 12 spice measurements would
need to be made.

10

BR 6/00 19

Adding Timing Data to Cell Definition
Delay timing data is added to the output pin definition of a cell. Values
for both output delay and output transistion need to be added. For AND2
example: pin(O) {

direction : output;
function : "A1 * B1";
timing() {
cell_rise(t4x3){

values("0.740,0.755,0.768",
"0.803,0.823,0.838",
"0.918,0.939,0.954,0.967”,
“1.439,1.497,1.554,1.610”);

}
cell_fall(t4x3) {values(....)};
rise_transistion(t4x3) {values(....)};
fall_transistion(t4x3) {values(....)};
related_pin: “A1” ;
}

timing () { cell_rise.... cell_fall..
rise_transistion... fall_transition...

related_pin: “B1” ;
}

BR 6/00 20

Timing Data Format

• The timing data forms the lookup table for the delay
function.
– Each grouping of data (enclosed in quotes) corresponds to values

for index_1, with index_2 used to select a value from the group

– In this example, there were 4 capacitive load values, 3 input
transistion values, so there were 4 groups of data, with 3 data
values per group

• cell_rise, cell_fall are tplh, tphl propagation delays

• rise_transition, fall_transition are the new output transition
values for the output signal

• The indexes in the lookup table should be chosen to
represent the range of values seen in a design
– Do not count on accurate timing results if the algorithm has to

interpolate outside of these ranges.

11

BR 6/00 21

Setup/Hold Timing

Can either use a 1-dimensional or 2-dimensional lookup table
for setup/hold timing.

For 2-dimensional table, the two axes are transition time on data
pin, transition time on clock pin. Same template used for both
setup and hold.

lu_table_template(dff3x3) {
variable_1: constrained_pin_transition ;
variable_2: related_pin_transition ;
index_1 {“0.01, 0.1, 2.0”} ;
index_2 {“0.01, 0.1, 2.0”} ;

}

data input
transition

clock input
transition

BR 6/00 22

Setup/Hold Timing (cont).

For 1-dimensional table, the axis is different depending on setup
or hold time. Need seperate templates for setup/hold.

lu_table_template(setup_1d) {
variable_1: constrained_pin_transition ;
index_1 {“0.01 0.1 2.0”} ;

}

For setup time,
vary transition
time on data
input, use a fast
transition time for
clock

lu_table_template(hold_1d) {
variable_1: related_pin_transition ;
index_1 {“0.01 0.1 2.0”} ;

}

For hold time,
vary transition
time on clock
input, use a fast
transition time for
data

12

BR 6/00 23

Setup/Hold Timing Data in Cell

Example is DFF example, falling edge clock, 2-dimensional table.

pin(DATA1) {
direction : input;
capacitance : 51.289;
timing () {
related_pin : “CLK2”;
timing_type: setup_falling;
rise_constraint(dff3x3) {
values("0.199,0.229,0.242”,“0.252,0.261,0.268”,“0.275,0.282,0.289”);

}
fall_constraint(dff3x3) {
values("0.120,0.183,0.212”,“0.233,0.249,0.262”,“0.274,0.284,0.294”);
}

}
timing () {
related_pin : “CLK2”;
timing_type: setup_falling;
rise_constraint(dff3x3) { values(...); }
fall_constraint(dff3x3) { values(...); }
}

}

Setup/hold timing data on
‘data’ pin.

BR 6/00 24

Index values can be specified in Cells

All of the previous examples used fixed indexes for lookup tables.
Can specify index values in lookup table data, and use place holders
in the lookup table templates. This allows us to change index values
on a per table basis.

lu_table_template(t4x3) {
variable_1: total_output_net_capacitance ;
variable_2: input_net_transistion ;
index_1 {“0, 1, 2, 3”} ;
index_2 {“0, 1, 2”} ;

}
Placeholder
indexes

13

BR 6/00 25

Index values specified in Cell (cont.)
pin(O) {

direction : output;
function : "A1 * B1";
timing() {
cell_rise(t4x3){

index_1(“5, 20, 60, 200”);
index_2(“0.01, 0.1, 2.0”);
values("0.740,0.755,0.768",

"0.803,0.823,0.838",
"0.918,0.939,0.954,0.967”,
“1.439,1.497,1.554,1.610”);

}
cell_fall(t4x3) {values(....)};
rise_transistion(t4x3) {values(....)};
fall_transistion(t4x3) {values(....)};
related_pin: “A1” ;
}

timing () { cell_rise.... cell_fall..
rise_transistion... fall_transition...

related_pin: “B1” ;
}

Index values specified
here.

Index values need
to also be specified
here.

BR 6/00 26

Picking Index Values

• Important not to let tool interpolate outside of indexes

• Transition index choice
– leftmost value could transistion time of fastest cell (largest inverter) with

no load

– rightmost value could transition time of weakest output drive cell driving
largest expected load (synthesis library file should restrict maximum
fanout so that fanout load is bounded).

• Capacitance index choice
– leftmost value could be smallest pin capacitance value in library (or 10%

to 20% lower than this for margin).

– rightmost value should be largest pin capacitance value in library X
maximum allowed fanout (may want to add 10% to 20% for margin).

• Number of indexes?
– How much SPICE are you willing to do?

– Most characterization systems are automated.

14

BR 6/00 27

Environmental Scaling Factors

• Temperature, Process, Voltage affect timing

• Two approaches
– Specify multiplicative factors (k-factors) that modify timing values

based on Process, Temperature, Voltage

– Have different synthesis libraries with different timing tables for
different environments (nominal, slow, fast).

• Many K-factors available in Synopsys
– K-factors are timing model dependent (one set for nonlinear

model, one set for linear model, etc..)

– Default values of K-factors are 0 which means that timing, voltage,
process values do not affect timing calculations

– Will not consider environmental conditions in this project.

BR 6/00 28

Input Pad Specification

cell (IPAD_1) {
area : 2973.6 ;
pad_cell : true;

pin (A) {
direction : input ;
capacitance : 85 ;
is_pad : true ;

}
pin (Y) {
direction : output ;
function : "A" ;
}

}

Indicates that this pin
is a pad.

Timing data for
output pin not
shown.

15

BR 6/00 29

Output Pad Specification

cell (OPAD_1) {
area : 2973.6 ;
pad_cell : true;

pin (A) {
direction : input ;
capacitance : 278 ;

}
pin (Y) {
direction : output ;
function : "A" ;
is_pad : true ;
drive_current : 0.05 ;
}

}

Timing data not shown.

Output pad pin must
have a ‘drive_current’
specification. Units
are whatever the
current_unit attribute
is set in library
header.

BR 6/00 30

For your Synopsys library

• Need minimum cell set for Synopsys (nand2, nor2,
inverter, DFF with async preset/clear), logic0, logic1.
– No timing information needed for logic0, logic1 cells

• Need to demonstrate that the synthesized netlist simulation
matches RTL simulation (functional specification is
correct)

• Need accurate timing information for non-IO cells

• Need to be able to produce a netlist with/without IO cells

• For IO cells, only need an Input pad, Output pad (no tri-
state)

