Optimizing Delay

* Optimizing delay can be broken into two categories
— Gate Size selection
— Transistor sizing
» Gate size selection is done in a standard cell design
approach in which you have a library that offers multiple
drive strength cells and pick the cells sizes that give the
highest speed for a design
— Current synthesis tools do a good job
» Transistor sizing is done in a custom design in which you
size individual transistors during the design process to
optimize delay
— quality depends on individual designer
— some synthesis help available
— simulation iteration a tempting option but can be time consuming

BR 6/00

Gate Size Selection

Many algorithms for gate size selection exist
» One iterative approach is known as the Tilos algorithm

Assumptions:
1. Can compute the delay along a path of gates
2. Have multiple gate sizes to choose from

Will yield good results for a path delay

BR 6/00

Tilos Algorithm

Step#1: Start with Minimum gate sizes, set

equal to last gate F oto current_gate -1,

WWW%—% o

Step #2a: Increment size of current_gate, compute path_delay a

[
gl 92 03 g4 T

BR 6/00 3

Tilos Algorithm (cont.)

Step #2b: Restore current_gate size. Increment size of
driving_ gate compute path_delay b

%%@O {>QJT—CL

Step #3: If (path_delay_a > path_delay_b) then keep new size of
driving_gate, else keep new size of current gate.

Repeat Steps #2, #3 until no further delay improvement.

Set current_gateto driving_gate, driving_gateto current_gate-1
and repeat until all gates sized (an exception: the first gate size is

considered a FIXED size as in an input buffer).
BR 6/00 4

Some Observations

To save execution time, do have to compute entire path delay.

Computing changes in delay in a ‘window’ around sized-gate
CL

Compute delay changes here

Also, gate sizes do not have to be exact to get near optimum
delay. If optimum gate size happens to be 2.5x, a choice of

2X or 3X will yield good results. This means that rough
estimation of gate sizes or transistor sizes can often be
satisfactory. BR 6/00 5

Rules of Thumb

» Keep fan-in low to keep #transistors in series low (for sub-
micron, often <= 3).

» Keep fan-out <5

» Along a critical path, the minimum delay is achieved if
each stage delay is about equal

» Keep rise/fall times about equal

BR 6/00 6

Estimating Gate Delay, Transistor sizing

* Would be nice to have a “back of the envelope” method of
sizing gates/transistors that would be easy to use and
would yield reasonable results

 Sutherland/Sproull/Harris book “Logic Effort: Designing
Fast CMOS Circuits” introduces a method called “Logical
Effort”

» Chapter 1 of the book is posted on the Morgan-Kaufman
website (, search for author names)
— Download this chapter, READ IT!
* We will attempt to apply this method during the semester
to the circuits that we will look at.

» Will look at static CMOS application first (these notes
taken from that chapter).

BR 6/00

Gate Delay Model

Delay will always be normalized to dimensionless units to
isolate effects of fabrication process

Ay =d* 1

Where T is the delay of a minimum sized inverter driving an
identical inverter with no gate delay.

Delay of a logic gate is composed of the delay due to parasitic
delay p (no load delay) and the delay due to load (effort delay
or stage effort f)

d= f+p

BR 6/00

Logical effort, Electrical Effort

The stage effort f (delay due to load) can be expressed as a
product of two terms:

f=g* h

g captures properties of the logic gate and is called the logical
effort.

h captures properties of the load and is called the electrical
effort.

On the surface, this does not look different from the model
discussed earlier:

Gate delay = no-load delay + K * Cload
Where K represented the pullup/pulldown strength of the
PMOS/NMOS tree.

BR 6/00 9

Logical Effort (g)

In the Sutherland/Sproull model, the logical effort g factor is
normalized to a minimum sized inverter for satic CMOS.

So g for an inverter is equal to 1.

Logical effort g of other gates represents how much more input
capacitance a gate must present to produce the same output current
astheinverter.

g=1

_O“:E EC| 2
W=2 A g =43
A v '2—Y

B

_|

W=1 g = Cin(nand)/Cin(inv)
2

BR 6/00 1 10

Logical Effort inverter vs nor2

g=1 B < 4
5 g =53

X W=2 A—dC 4

Y

Y
w=1
N B ﬁ 1 % 1
Intuitive result, Nor2 g is higher than Nand2 g
BR 6/00 11

Logical Effort inverter vs Complex gate

g=1
A
W=2
\ 2
Y
F
W=1 g(a) = 4/3

g(b,c) =2

Intuitive result, worse case g of complex gate ﬁgher tha_n
Nand2 or Nor2.

In general, more inputs, more series transistors, the higher the
g value. BR6/00 12

Logical Effort vs. Electrical Effort

» The value for logical effort g is independent of transistor
size

» The g value is dependent on number of inputs, and
topology

» The electrical effort h parameter is used to capture the
driving capability of the gate via transistor sizing and also
the effect of transistor sizes on loading

 Electrical effort his defined as

Cout/ Cin

where Cout is the load capacitance, Cin is the input
capacitance of the gate.

* Note that h for a gate will reduce as the transistors become
wider since Cin increases.

BR 6/00 13

The Parasitic Delay p

* Note that the parasitic delay (no-load) p is a constant and
independent of transistor size; as you increase the
transistor sizes the capacitance of the gate/source/drain
areas increase also which keeps no-load delay constant

» To measure P (once P is known, can compute T).

e o

A delay=(g*h+p)*T = (I*L+p)*1 A B
T = (A _delay)/(1+p)
C delay=(g*h+p)*1 = (1*2+p)*1 C D

C_delay = (2+p) (A_delay)/(1+p)
p = (2*A _delay — C_delay)/ (C_delay-A_delay)

BR 6/00 14

Parasitic Delay of Other Gates

» Normalizing the parasitic delay to that of the inverter can
be useful for normalization purposes.

» Some typical values according to Southerland/Sproull:
inverter Pinv = 1.0
N-input nand N* Piny

N-input nor N* Piny

Will use these values for example purposes.

BR 6/00 15

Delay Estimation
{@O A0
A B

A_delay =g*h +p = 1*(CinB/CinA) +1
= 1*(4*CinA/CinA) +1 =4+ 1= 5time units

oo
A B
A_delay =g*h +p = (4/3)*(CinB/CinA) + 2*1
Cin B=4*3=12. Cin A=4
A_delay = (4/3)*(12/4) + 2 = 4+ 2 =6 units
Nand2 worse because of higher parasitic delay than inverter.

Note that g*h term was same for both because NAND2 sized to provide same
current drive. BR 6/00

16

MultiStage Delay

» Recall rule of thumb that said to balance the delay at each
stage along a critical path

» Concepts of logical effort and electrical effort can be
generalized to multistage paths

oo e,

Path logical effort = g1*g2*g3 *g4 -

Cout

In general, Path logic effort G = I g(i)
Path electrical effort H=" Cout / Cing 4 e

Must remember that electrical effort only is concerned with
effect of logic network on input drivers and output load.

BR 6/00 17

Off Path Load

>0
oo oo
>0 1

Off path load will divert electrical effort from the main path, must
account for this. Define a branching effort b as:

b = (Con_path + Coff_path) / Con_path

The branching effort will modify the electrical effort needed at
that stage. The branch effort B of the path is:

B = I b(j)

BR 6/00 18

Path Effort F
Path effort F is:

F = path logic effort * path branch effort * path electrical effort
= G*B*H

Path branch effort and path electrical effort is related to the electrical
effort of each stage:

B* H= Cout/Cin * T b(i) = h(i)

Our goal is choose the transistor sizes that effect each stage effort

BR 6/00 19

Minimizing Path Delay
The absolute delay will have the parasitic delays of each stage
summed together.

However, can focus on just Path effort F for minimization purposes
since parasitic delays are constant.

For an N-stage network, the path delay isleast when each stagein
the path bears the same stage effort.

f (min) = g(i) * h(i) = FN

Minimum achievable path delay
D(min) = N* F'N+ P

Notethat if N=1, then d = f+ p, theoriginal single gate equation.

BR 6/00 20

10

Choosing Transistor Sizes

Remember that the stage effort h(i) isrelated to transistor sizes.
f (min) = g(i) * h(i) = FN

So
h(i) min=FYN/ g(i)
To sizetransistors, start at end of path, and compute:
Cin(i) = gi * Cout (i) / f(min)

Once Cin(i) is know, can distribute this among transistors of that
stage.

BR 6/00 21

Cin=C An Example

] Cin=7? Ccin=7
_wom:c

1

Size the transistors of the nand2 gates for t=he three stages
shown.

Path logic effort =G =g0* gl * g2=4/3* 4/3* 4/3=2.37
Branching effort B = 1.0 (no off-path load)
Electrical effort H = Cout/Cin= C/C =1.0

Min delay achievable = 3* (G*B*H)V3 + 3 (2*pinv)
=3*(2.37*1*1)13 +3(2*1.0) = 10.0

BR 6/00 22

11

An example (cont.)

The effort of each stage will be:
f min=(G*B*H) ¥ = (2.37*1.0*1.0) ¥ =1.33= 4/3

Cin of last gate should equal:

Cinlast gate (min) = gi * Cout (i) / f(min)
= 43*CJ/@43) =C
Cin of middle gate should equal:

Cin middle gate = gi * Cin last gate/ f(min)
= 4/3*C/(413)=C

All gates have same input capacitance, distribute it among

transistors.
BR 6/00

23

Transistor Sizes for Example

Where gate capacitance of
, 7 2*W *L Mosfet = C/2

Choose W accordingly.

BR 6/00

24

12

Let Load = 8C, what changes?
Cin=C

— Cin=?? Cin="7
_WOMZBC

1

Size the transistors of the nand2 gates for the three stages
shown.

Path logic effort =G =g0* gl * g2=4/3* 4/3* 4/3=2.37
Branching effort B = 1.0 (no off-path load)
Electrical effort H = Cout/Cin= 8C/C =8.0

Min delay achievable = 3* (G*B*H)V3 + 3 (2*pinv)
=3*(2.37*1*8)¥3 +3(2*1.0) = 14.0

BR 6/00 25

8C Load Example (cont.)

The effort of each stage will be:
f min=(G*B*H) 3 = (2.37%1.0*8) ¥3=2.67=8/3

Cin of last gate should equal:

Cinlast gate (min) = gi * Cout (i) / f(min)
= 43 *8C/(83) = 4C
Cin of middle gate should equal:

Cin middle gate = gi * Cin last gate/ f(min)
= 4/3* AC/ (8/3) =2C

Note that each stage gets progressively larger, asistypical
with a multi-stage path driving a large load.

BR 6/00 26

13

Example 1.6 from Chapter 1

Size path from Cin=y

AtoB 4.5C

i

T 45C

B
Cin=C Cin=z 1 4.5C

Path logic effort G=g0* gl* g2=4/3* 4/3* 4/3=2.37
Branch effort, 1% stage = (y+y)/y = 2.

Branch effort, 2" stage = (z+z+2)/z = 3

Path Branch effort B=2* 3 =6.

Path electrical effort H = Cout/Cin = 4.5C/C = 4.5

Path stage effort = F = G*B*H = 2.37*6*4.5 = 64.

Min delay = N(F)UN + P = 3*(64)Y2 + 3(2pinv) = 18.0 units

BR 6/00 27

Example 1.6 from Chapter 1 (cont)

Stage effort of each stage should be:
f(min) = (YN = (GBH)WN =(64) 13=4

Determine Cin of last stage:
Cin(z) =g* Cout/ f(min) =4/3* 45C/4 =15C
Determine Cin of middle stage:

Cin(y) = g * (3*Cin(z))/ f(min) = 4/3* (3*1.5C) / 4 = 1.5C

Isfirst stage correct?
Cin(A) = g* (2*Cin(y))/f(min) = 4/3 *(2*1.5C)/4 = C.
Y es, self-consistent.

BR 6/00 28

14

Example 1.10 from Chapter 1
Cin = 10u gate cap

Cinx=??
- Cinz=?7?
MDO Cout = 20u gate cap
Ciny=7? %

Path logic effort G=g0* gl* g2* g3=1*5/3* 4/3* 1=20/9
Path Branch effort B = 1

Path electrical effort H = Cout/Cin = 20/10 =2

Path stage effort = F = G*B*H = (20/9)* 1*2 = 40/9

For Min delay, each stage has effort (F)YN = (40/9)V4 = 1.45

z=g* Cout/f(min) = 1*20/1.45 =14
y=g* Cin(z)/f(min) =4/3* 14/ 1.45=13
x=g* Cin(y)/f(min) =5/3* 13/1.45= 15

BR 6/00 29

Misc Comments

* Note that you never size the first gate. This gate size is
assumed to be fixed (same as in the Tilos algorithm) — if
you were allowed to size this gate you find that the
algorithm would want to make it as large as possible.

» This is an estimation algorithm. The author claims that
sizing a gate by 1.5x too big or two small still results in
path delay within 5% of minimum.

BR 6/00 30

15

Evaluating different Structure options

Cini@j The problem
T 8C

Cin=C
_DOE}D 8C
ion #1
Option T

Cin=C
o —} Oo—1 8C
Option #2 jj@jD T

BR 6/00 31

Option #1
Cin=C
B 8C
Option #1 DO@W >O Tl

Path logic effort G=g0* gl* g2 =1*6/3* 1=2
Path Branch effort B = 1

Path electrical effort H = Cout/Cin=8C/C =8
Path stage effort = F = G*B*H = 2*1*8 = 16

Mindelay: = N* (F)YN +P
= 3*(16)Y2 + (pinv + 4*pinv + pinv)
= 3*(25+ 6= 135

BR 6/00 32

16

Option #2

_%}D@__TL 8C

Option #2 tj@f

Path logic effort G=g0* gl * g2 =1*4/3* 5/3=20/9
Path Branch effort B = 1

Path electrical effort H = Cout/Cin=8C/C =8

Path stage effort = F = G*B*H = 20/9* 1*8 = 160/9

Mindelay: = N* (F)YN +P

= 3*(160/9)3 + (pinv + 2*pinv + 2*pinv)

= 3*26+ 5= 128
Option #2 appears to be better than Option #1, by a slight
margin.

BR 6/00

17

