Optimizing Delay

+ Optimizing delay can be broken into two categories
— Gate Size selection
— Transistor sizing
 Qate size selection is done in a standard cell design
approach in which you have a library that offers multiple
drive strength cells and pick the cells sizes that give the
highest speed for a design
— Current synthesis tools do a good job
 Transistor sizing is done in a custom design in which you
size individual transistors during the design process to
optimize delay
— quality depends on individual designer
— some synthesis help available
— simulation iteration a tempting option but can be time consuming

BR 6/00 1

Gate Size Selection

* Many algorithms for gate size selection exist
* One iterative approach is known as the Tilos algorithm

Assumptions:
1. Can compute the delay along a path of gates
2. Have multiple gate sizes to choose from

Will yield good results for a path delay

BR 6/00

©

Tilos Algorithm
Step #1: Start with Minimum gate sizes, se
equal to last gate, to current_gate —1
— 1X X
Loa
gl 22 23 g4

Measure delay, call this last_delay .

Step #2a: Increment size of current_gate, compute delay_a
T~
gl 2 23 g4

BR 6/00 3

Tilos Algorithm (cont.)

Step #2b: Restore current_gate size. Increment size of
driving_gate, compute delay b

\-.
—po—fro—lpo—Po—
gl 22 23 g4 T

Step #3: Compare delays A, B against /last_delay. Whichever
shows the greatest improvement, use this new gate configuration
and set last_delay equal to the new delay.

Repeat Steps #2, #3 until no further delay improvement.

Set current_gate to driving gate, driving gate to current_gate-1
and repeat until all gates sized (an exception: the first gate size is
considered a FIXED size as in ag jpput buffer).

4

Some Observations

To save execution time, do have to compute entire path delay.

Computing changes in delay in a ‘window’ around sized-gate

o {po—fpo—fbofboT
gl g2, 23 g4 g4 T

Compute delay changes here

Also, gate sizes do not have to be exact to get near optimum
delay. If optimum gate size happens to be 2.5x, a choice of

2X or 3X will yield good results. This means that rough
estimation of gate sizes or transistor sizes can often be
satisfactory. BR 6/00 5

Rules of Thumb

» Keep fan-in low to keep #transistors in series low (for sub-
micron, often <= 3).

* Keep fan-out <5

* Along a critical path, the minimum delay is achieved if
each stage delay is about equal

» Keep rise/fall times about equal

BR 6/00 6

Estimating Gate Delay, Transistor sizing

* Would be nice to have a “back of the envelope” method of
sizing gates/transistors that would be easy to use and
would yield reasonable results

* Sutherland/Sproull/Harris book “Logic Effort: Designing
Fast CMOS Circuits” introduces a method called “Logical
Effort”

+ Chapter 1 of the book is posted on the Morgan-Kaufman
website (, search for author names)

— Download this chapter, READ IT!

» We will attempt to apply this method during the semester
to the circuits that we will look at.

» Will look at static CMOS application first (these notes
taken from that chapter).

BR 6/00 7

Gate Delay Model

Delay will always be normalized to dimensionless units to
isolate effects of fabrication process

dyps =d* 1

Where t (Tau) is the delay of a minimum sized inverter
driving an identical inverter with no parasitics. Tau is NOT the
no-load delay of an inverter. Also, it is not the delay of a 1x
inverter driving a 1x inverter since this includes the delay
contributions due to parasitics.

Delay of a logic gate is composed of the delay due to parasitic
delay p (no load delay) and the delay due to load (effort delay
or stage effort f)

d= f+p

BR 6/00 8

Logical effort, Electrical Effort

The stage effort f(delay due to load) can be expressed as a
product of two terms:

f=g*h
So delay is

dabs = (er p) *1
= (g'h+p) ¥
g captures properties of the logic gate and is called the logical

effort.

h captures properties of the load and is called the electrical

effort.

BR 6/00 9

RC model versus Logical Effort Model

On the surface, this does not look different from the model
discussed earlier:

Logical Effort:
dyps = (g"h+p)*1

Previous RC model
Gate delay = K * Cload + no-load delay

Where K represented the pullup/pulldown strength of the
PMOS/NMOS tree.

It would help to see how the RC model can be used to derive
the logical effort model.

BR 6/00 10

Derivation of Logical Effort Equations via RC model

Logic Gate Model X .
Rui : pullup resistance

P
Icm

Rdi : pulldown resistance

Cpi: parasitic cap of gate

BR 6/00 11

Tau

Tau (1) is the absolute delay of a 1x inverter driving a 1x inverter
with no parasitics. ~ We assume equal pullup/pulldown Rinv,
and Cin = Cinv, so:

Tau= « * Rinv * Cinv

where K is a constant characteristic of the fabrication process that
relates RC time constants to delay.

Note: Tau is NOT the no-load delay of an inverter. Also, it is
not the delay of a 1x inverter driving a 1x inverter since this
includes the parasitic delay! This means that determing Tau
cannot be done via one delay measurement.

BR 6/00 12

Template Circuit

A template circuit is chosen as the basis upon which other gates are
scaled. The scaling factor is o .

Ct is the input cap of the template.

Rt is the pullup or pulldown resistance of the template.

Cpt is the parasitic capacitance of the template.

Cin=o * Ct input cap scales up
Ri=Rui=Rdi= Rt/ a channel resistance scales down
Cpi=oa * Cpt parasitics scale up
BR 6/00 13

RC Delay
Dabs =« Ri (Cout + Cpi)
=k (Rt/ o) Cin (Cout/Cin) + « (Rt/ o) (o Cpt)
= (k Rt Ct) (Cout/Cin) +« Rt Cpt

Written in this form, can see relation to logical effort model:
Dabs = 1(gh+p)

t© =« Rinv Cinv (previous definition)
g = (Rt Ct)/(Rinv Cinv) Note: if template = 1X inverter,
theng=1 1!
h =Cout/ Cin
p = (Rt Cpt)/ (Rinv Cinv)
Note: book value of Pinv = 1 only true if Cpt (parasitics) = Cinv (Cgate)!!

BR 6/00 14

Logical Effort (g)

In the Sutherland/Sproull model, the logical effort g factor is
normalized to a minimum sized inverter for static CMOS.

So g for an inverter is equal to 1.

Logical effort g of other gates represents how much more input
capacitance a gate must present to produce the same output current

as the inverter (the template gate) .
—L 2
g =4/3
Y

g=1
w=2 A
A — Y
B g = Cin(nand)/Cin(inv)
—

W=l

BR 6/00

Logical Effort inverter vs nor2

g=1 B < 4
. g =53
N Ww=2 A AT 4
— Y
Y
W=1
- B 'ﬁ 1M a 1
Intuitive result, Nor2 g is higher than Nand2 g
BR 6/00 16

Logical Effort inverter vs Complex gate

g =
A
w=2 d
A Y
W=1 g(a)=4/3

g(b,e)=2

Intuitive result, worse case g of complex gate higher than
Nand2 or Nor2.

In general, more inputs, more series transistors, the higher the
g value. BR 6/00 17

Logical Effort vs. Electrical Effort

» The value for logical effort g depends on what gate is

chosen as the template gate (g=1)
— Choosing a different template gate will alter ‘g’ values for the
other gates in your library

* The g value captures the effects of varying number of
inputs, and transistor topology on more complex gates than
your template gate

* More complex gates will require more logical effort to
produce the same output current as the template gate, and
will also present a higher input load

* The logical effort for a 1x Nand2, 2X Nand2, 4X Nand2
are all the same — the effect of the extra load by the larger
transistors is captured by the electrical effort parameter

BR 6/00 18

Logical Effort vs. Electrical Effort

* The electrical effort 4 parameter is used to capture the
driving capability of the gate via transistor sizing and also
the effect of transistor sizes on loading

* Electrical effort 4 is defined as

Cout/ Cin
where Cout is the load capacitance, Cin is the input
capacitance of the gate.

* Note that / for a gate will reduce as the transistors become
wider since Cin increases (Cout is assume fixed).

BR 6/00 19

The Parasitic Delay p

« Note that the parasitic delay (no-load) p is a constant and
independent of transistor size; as you increase the
transistor sizes the capacitance of the gate/source/drain
areas increase also which keeps no-load delay constant

* To measure P (once P is known, can compute t).

Method #1

A_delay=(g*th+p)*t = (1*1 +p) *1 B

T = (A_delay)/(1+p)

C_delay=(g*h+p)*t = (1*2+p) *1 C D
C delay = (2+p) (A_delay)/(1+p)
p =(2*A_delay — C_delay)/ (C_delay-A_delay)

BR 6/00

@f%
oo

Method #2: A Better Way to Measure P, Tau

DU

Plot Delay, Fit to Straight line (delay = mX + b)

Detay

B

¢

No load delay ~ “"*5iow

Vary 1x, 2x,
realistic Measure delay ~ 4x, 6x, 8x Fixed, end
waveforrn from A to B Cload ratio is 10ad to prevent
shaping Miller effect
G3/DUT onG3
BR 6/00 21
Tau, Pinv

By definition, ginv = 1.0

From fitted line of mx +b, Tau can be calculated at any
point as:

delay = tau (g*h + Pinv)
=tau * g *h + tau * Pinv

When X=0, delay = tau*Pinv = b (y-intercept).
So:
Tau = (delay_measured — b)/Cload

When Tau is known, can compute Pinv

BR 6/00 23

Method #1 vs Method #2

Using Vdd = 2.5, Leda 0.25u

Tau Pinv Pnand2 Pnand4

method1 8.4 6.6 11
method2 9.6 5.7 12

Differences mainly due to realistic waveshaping of inputs.

BR 6/00

23
30

Measuring Actual Logical Effort

The Sproull textbook has you calculate logic effort (g) but it can

be measured.

When replace all gates in test circuit with Nand2, and plot:
delay= M,,,(,*X +B

versus

delay= M, *X +B

the ratio of M, ,,s»/M,,, is the logical effort of the Nand2 since

the Cload ratios are the same, and Tau is the same.

BR 6/00 25

Logical Effort of Nand2, Nand4

Nand2 g 'Nand4 g

Parasitic Delay of Other Gates

* Normalizing the parasitic delay to that of the inverter can
be useful for normalization purposes.

+ Some typical values according to Southerland/Sproull:

inverter Piny = 1.0
N-input nand n*p.
N-input nor n* piny

Will use these values for example purposes.

BR 6/00 27

Book 1.33 2
Measured 1.6 2.2
Delay Estimation
7®07
A B

A _delay=g*h+p = 1*(CinB/CinA) + 1
= 1*(4*CinA/CinA) +1=4+1= 5 time units

@o—

A B
A_delay=g*h+p = (4/3)*(CinB/CinA) + 2*1
Cin B= 43=12. Cin A=4
A_delay = (4/3)%(12/4) +2 = 4+2 =6 units
Nand2 worse because of higher parasitic delay than inverter.
Note that g*h term was same for both because NAND?2 sized to provide same
current drive. BR 6/00 28

MultiStage Delay

* Recall rule of thumb that said to balance the delay at each
stage along a critical path

» Concepts of logical effort and electrical effort can be
generalized to multistage paths

Dol

Path logical effort = gl*g2*g3 *g4 =

In general, Path logic effort G = TT g(i)
Path electrical effort H= Cout / Cingy sy

Must remember that electrical effort only is concerned with
effect of logic network on input drivers and output load.

BR 6/00 29

Cout

Off Path Load

>0
—>o— DWDO}

Cout

Off path load will divert electrical effort from the main path, must
account for this. Define a branching effort b as:

b = (Con_path+ Coff path)/ Con_path

The branching effort will modify the electrical effort needed at
that stage. The branch effort B of the path is:

B = TIb(i)

BR 6/00 30

Path Effort F
Path effort F is:

F = path logic effort * path branch effort * path electrical effort
= G*B*H

Path branch effort and path electrical effort is related to the electrical
effort of each stage:

B*H= Cout/Cin * IIb(i) =IT h(i)

Our goal is choose the transistor sizes that effect each stage effort

BR 6/00 31

Minimizing Path Delay
The absolute delay will have the parasitic delays of each stage
summed together.

However, can focus on just Path effort F for minimization purposes
since parasitic delays are constant.

For an N-stage network, the path delay is least when each stage in
the path bears the same stage effort.

f(min)= g(i)* h(i) = FIN

Minimum achievable path delay
D(min) = N *FIN+ P

Note that if N=1, then d = f+p, the original single gate equation.

BR 6/00 32

Choosing Transistor Sizes

Remember that the stage effort h(i) is related to transistor sizes.

f(min) = g(i) *h({@) = F'N

So
h(i) min = FIN / g(i)
To size transistors, start at end of path, and compute:
Cin(i) = gi * Cout (i) / f(min)

Once Cin(i) is know, can distribute this among transistors of that
stage.

BR 6/00 33

Cin=C An Example

Cin=7? Cin=2
Wout =C

1

Size the transistors of the nand2 gates for the three stages
shown.

Path logic effort =G = g0 * gl * g2 =4/3 *4/3 *4/3 =237
Branching effort B=1.0 (no off-path load)
Electrical effort H= Cout/Cin= C/C =1.0

Min delay achievable = 3* (G*B*H)' + 3 (2*pinv)
=3 *#2.37*1*1)13 +3(2*1.0) = 10.0

BR 6/00 34

An example (cont.)

The effort of each stage will be:
fmin = (G*B*H)1? = (2.37*1.0*1.0) ' =1.33 = 4/3

Cin of last gate should equal:

Cin last gate (min) = gi * Cout (i) / f(min)
= 4/3 *C/@4/3) =C
Cin of middle gate should equal:

Cin middle gate = gi * Cin last gate / f(min)
= 4/3*C/4/3)=C

All gates have same input capacitance, distribute it among

transistors.
BR 6/00 35

Transistor Sizes for Example

Where gate capacitance of

2 *W *L Mosfet= C/2

Choose W accordingly.

BR 6/00 36

Let Load = 8C, what changes?
Cin=C

Cin=7? Cin=9
:‘:)@Wout =8C

1

Size the transistors of the nand2 gates for the three stages
shown.

Path logic effort =G = g0 * gl * g2 =4/3 *4/3 *4/3 =237
Branching effort B=1.0 (no off-path load)
Electrical effort H = Cout/Cin = 8C/C = 8.0

Min delay achievable = 3* (G*B*H)' + 3 (2*pinv)
=3 *#(2.37*%1*8)13 + 3 (2*1.0) = 14.0

BR 6/00 37

8C Load Example (cont.)

The effort of each stage will be:
fmin = (G*B*H) 1» = (2.37*1.0*8) 13 =2.67 =8/3

Cin of last gate should equal:

Cin last gate (min) = gi * Cout (i) / f(min)
4/3 *8C/(8/3) = 4C
Cin of middle gate should equal:

Cin middle gate = gi * Cin last gate / f(min)
= 4/3 *4C/(8/3)=2C
Note that each stage gets progressively larger, as is typical
with a multi-stage path driving a large load.
BR

Example 1.6 from Chapter 1

Size path from Cin=y
AtoB

A
Cin=C Cin=z2

Path logic effort G = g0 * gl * g2 =4/3 *4/3 *4/3=2.37
Branch effort, 15t stage = (y+y)/y = 2.

Branch effort, 2" stage = (z+z+z)/z =3

Path Branch effort B=2 *3 =6.

Path electrical effort H= Cout/Cin = 4.5C/C = 4.5

Path stage effort = F = G*B*H = 2.37%6*4.5 = 64.

Min delay = N(F)!N + P = 3*(64)!3 + 3(2pinv) = 18.0 units

BR 6/00 39

Example 1.6 from Chapter 1 (cont)

Stage effort of each stage should be:

f(min) = (F)'N =(GBH)'N =(64) » =4
Determine Cin of last stage:

Cin(z) = g * Cout / f(min) =4/3 *4.5C/4 =15C
Determine Cin of middle stage:

Cin(y) = g * (3*Cin(z))/ f(min) = 4/3 * (3*1.5C) /4 = 1.5C
Is first stage correct?

Cin(A) = g * (2*Cin(y))/f(min) = 4/3 *(2*1.5C)/4 = C.
Yes, self-consistent.

BR 6/00 40

Example 1.10 from Chapter 1
Cin = 10u gate cap

Cinx=1??
- Cinz=17?
MDO Cout = 20u gate cap
Ciny=1?? %:

Path logic effort G = g0 * gl * g2 * g3 =1*5/3 *4/3 * 1 =20/9
Path Branch effort B =1

Path electrical effort H= Cout/Cin = 20/10 =2

Path stage effort = F = G¥*B*H = (20/9)*1*2 = 40/9

For Min delay, each stage has effort (F)'N = (40/9)"4 =1.45

z =g * Cout/f(min) = 1*¥20/1.45 = 14
y =g * Cin(z)/f(min) =4/3 * 14/ 1.45=13
x =g * Cin(y)/f(min) =5/3 *13/1.45= 15

BR 6/00 41

Misc Comments

+ Note that you never size the first gate. This gate size is
assumed to be fixed (same as in the Tilos algorithm) — if
you were allowed to size this gate you find that the
algorithm would want to make it as large as possible.

* This is an estimation algorithm. The author claims that
sizing a gate by 1.5x too big or two small still results in
path delay within 5% of minimum.

BR 6/00 42

Evaluating different Structure options

CiniD@@j The problem
T 8C

Cin=C
D poge
Option #1 T

Cin=C | D [
Doj 8C
Option #2 j}f B

BR 6/00 43

Option #1
Cin=C
Do
Option #1 T

Path logic effort G=g0 * gl * g2 =1%6/3*1=2
Path Branch effort B =1

Path electrical effort H= Cout/Cin = 8C/C =8
Path stage effort = F = G*B*H = 2*1*8 = 16

Min delay: = N* (F)!N+P
=3 *(16)! + (pinv + 4*pinv + pinv)
= 3%2.5)+ 6= 135

BR 6/00

Option #2
PP oy w
Option #2 t‘:}}j L

Path logic effort G = g0 * gl * g2 = 1*4/3 * 5/3 =20/9
Path Branch effort B =1

Path electrical effort H= Cout/Cin = 8C/C =8

Path stage effort = F = G¥*B*H = 20/9*1*8 = 160/9

Min delay: =N* (F)!/N+P
=3 *(160/9)' + (pinv + 2*pinv + 2*pinv)
=3%26+ 5= 128
Option #2 appears to be better than Option #1, by a slight
margin.
BR 6/00 45

