
1

V 0.1 1

Parallel IO

Parallel IO – data sent over a group of parallel wires.
Typically, a clock is used for synchronization.

CPU #1
D[15:0]

CPU #2clk

A 16-bit data channel is shown above. If data is transferred
each rising clock edge, and clock rate is 300 MHz, then the
data transfer rate (bandwidth) in bytes/sec is:

2 Bytes/clock period = 2 /(1/300e06)s
= 2 * 300e06/s = 600e06/s
= 600 MB/s (MB = MBytes)

V 0.1 2

Serial IO
Serial IO – data sent one bit at a time, over a single wire.
A clock may or may not be used for synchronization

CPU #1 CPU #2clk
D

Question: Assuming one bit is sent each rising clock edge, how
fast does the clock have to be achieve 600 MB/s?

600 MByte/s = 600 MBytes/s * 8 bits/1Byte = 4800Mb/s

Clock period = 1/4800e06
Clock Frequence = 1/clock period = 4800e06 = 4.8e09 = 4.8GHz

V 0.1 3

Parallel vs. Serial IO
Parallel IO Pros/Cons

Pros: Speed, can increase
bandwidth by either
making data channel wider
or increasing clock
frequency

Cons: Expensive (wires
cost money!). Short
distance only – long
parallel wire causes
crosstalk, data corruption.

Serial IO Pros/Cons

Pros: Cheap, very few
wires needed. Good for
long distance interconnect.

Cons: Speed; the fastest
serial link will typically
have lower bandwidth than
the fastest parallel link.
However, for long
distances (meters), new
fast serial IO standards
(USB2, Firewire) have
replaced older parallel IO
standards. V 0.1 4

simplex vs half-duplex vs full-duplex
For communication channels

CPU #1 CPU #2
simplex: communication in one
direction only

CPU #1 CPU #2

Half-duplex: communication in either direction, but only
one way at a time

or

CPU #1 CPU #2

Full-duplex: communication in both directions at same
time.

V 0.1 5

Wires: Simplex, Half-duplex
For wires:
simplex wire: communication occurs only in one

direction.

half-duplex wire: communication can occur in either direction,
but with voltage signaling only one direction at a time.

uni-directional

bi-directional
Tx

Rx

Oe
Rx

Tx

Oe

Tx Rx

V 0.1 6

Wires: Full Duplex

Tx

Rx = ib -
+

Tx

+
- Rx = ia

ia ib

ia + ib

ia + ib

ia
ib

ia + ib

Current mode signaling allows full duplex communication
over a single wire. Used for communication in some
advanced chipsets.

Currents add,
voltages do
not!

2

V 0.1 7

Synchronous Serial IO

CPU #1
Synchronous Serial IO Channel

Synchronous serial IO either
(a) sends the clock as a separate wire

OR
(b) receiver (CPU #2) extracts clock from data stream or uses a Phase-

Locked-Loop (PLL) and changes in the data stream to synchronize internal
clock (phase alignment) to data stream.

For PLL synchronization, the data line must be guaranteed to have a
minimum number of state changes (0 → 1 or 1 →0) within a particular time
interval (transition density).

Synchronous serial IO can achieve high speeds; all new high speed serial
standards are synchronous.

CPU #2
Internal clock frequencies match to
within a tolerance value. Can be out of
phase

V 0.1 8

Asynchronous Serial IO

CPU #1
Asynchronous Serial IO Channel CPU #2

Internal clock frequencies match to
within a tolerance value. Can be out of
phase

Asynchronous Serial I/O does not transmit the clock on a
separate wire nor does it guarantee a particular transition
densisty (ie., the data line could remain in the same state,
either ‘1’ or ‘0’ for the duration of the transmission after
the initial state change indicating start of transmission).

Asynchronous Serial I/O is used in older standards, is easy
to implement, but is slower than synchronous serial
standards.

V 0.1 9

A Three-Wire Async Serial Interface
We will use a three-wire asynchronous serial interface to
connect the PIC to an external PC.

This interface standard is known as RS-232 (there are more
wires defined in the standard, we will only use 3 wires)

CPU #1 CPU #2

Tx Rx
Rx Tx

gnd gnd

Tx:transmit, Rx:Receive

Each wire is simplex, but communication
channel is full duplex

V 0.1 10

Asynchronous Serial Data Frame

Serial Data Receiver Starts Processing When:
1) high to low is sensed (start bit detection)
2) following (7 or 8) bits represent a character
3) parity bit for error detection
4) stop bit is detected (a “mark”)

D0 D1 D2 D3 D4 D5 D6 P D0 D1* * *ST**

10 bits 7E1 (7 data bits, even parity, 1 stop bit)

D0 D1 D2 D3 D4 D5 D6 D7 D0 D1* *ST**

10 bits 8N1 (8 data bits, no parity, 1 stop bit)

*

ST

ST

Mark – A Constant Logic-1 Denoted by * Space – A Constant Logic-0

Standard is for Serial Line to CONSTANTLY be Driven to a MARK While Inactive

ST – start bit 1 ASCII char. = 7 bits
D0 – LSB (e.g. DEL = 7fh – higher is PC specific)
D6(D7) – MSB Typical is 10 bits for asynchronous transfer
P – parity bit Serial data with even/odd parity
* - stop bit – a “mark”

slide by Prof. Mitch Thornton

V 0.1 11

Example

When Receiver “sees” a Start Bit (high to low transition):

1) Local Timer Starts
2) Each bit sampled at midpoint in time (± % clock tolerance)
3) Maximum tolerance is ± ½ of 1 bit time interval over 10 intervals

= (½)/10 = 5%

0 1 1 0 1 0 1 0 1 1 111 0

* - stop bit – a “mark”ST – start bit 56h = “V” – ASCII Character

P – even parity bit

data values

slide by Prof. Mitch Thornton

V 0.1 12

Parity
• A parity bit is an extra bit added to a data frame to detect a

single bit error
– A single bit error is when one bit of the frame was received

incorrectly (read as ‘0’ when should have been ‘1’, or vice-versa).
– Not guaranteed to detect multi-bit errors

• Odd parity – parity bit value makes the total number of ‘1’
bits in the frame odd
– For 7-bit data value 0x56 (1010110),

odd parity bit = ‘1’

• Even parity – parity bit value makes the total number of ‘1’
bits in the frame even
– For 7-bit data value 0x56 (1010110),

even parity bit = ‘0’

3

V 0.1 13

Receiver Sampling
one bit time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4

Receiver clock; period usually either 64x or 16x bit time (above is 16x).

At start bit, internal 4-bit counter set to 0. Sample at mid-point of bit time (counter
value 7 or 8, some receivers sample at 7,8 and 9 and only accept bit if all values
are the same – do this for glitch rejection).

Receiver/Transmitter clocks not perfectly matched. Our tolerance is ½ bit time
(50%) spread over entire frame. Assuming a 10 bit frame, maximum mismatch
between Rx/Tx clocks is 50%/10 = 5%,

next bit

sample here

V 0.1 14

Baud Rate vs Bits Per Second

• Baud rate is the rate at which signaling events are sent
• Bits per second (bps) is the number of bits transferred per

second (any type of bits, data or overhead bits)
• If only a ‘1’ or ‘0’ is sent for each signaling event, then

baud rate = bps
• However, could use a signaling protocol that transfers

multiple bits per signaling event
– i.e., use 4 different voltage levels, send two bits of data per

signaling event (00 = -15v, 01= -5v, 10=+5v, 11 = 5v).
– In this case, bit rate will be double the baud rate

• The effective data rate is the rate at which data is
transferred, minus the overhead bits (ie. start and stop bits).

V 0.1 15

Common Baud Rates

163841200

40964800

20489600

102419200

51238400

25657600

128115200

Divisor for
14.7456 MHz

Baud Rate The PIC oscillator is divided
down in order to provide the
Tx/Rx clocks.

The divisor values on the
right show that the
commonly-used baud rates
are even multiples of
14.7456MHz. This means
these baud rates can be
accurately reproduced by the
PIC using this external
oscillator frequency.

V 0.1 16

Software-driven Serial I/O

CPU #1 CPU #2

RB2 RB3
RB3 RB2

Tx Rx
Rx Tx

Can implement a serial link via software subroutines.

Must be able to implement software delay loops that can
accurately delay for 1-bit time.

Does not require extra hardware on part of µP, but the processor
operation is consumed by the send/receive operation.

This approach is not-so-fondly referred to as bit-banging.

V 0.1 17

putch(c)
putch(c) -- send one character
over software serial link

/* assume RB2 is Tx line and
is already a ‘1’ */

void putch(c)
unsigned char c;
{

char i;

bitclear(PORTB,2);
delay_1bit();

for(i=0;i<8;i++) {
if (bittst(c,0))

bitset(PORTB,2);
else bitclr(PORTB,2);
delay_1bit();
c = c >> 1;

}
bitset(PORTB,2)
delay_1bit();

}

send start bit

send 8-data bits, this
does parallel-to-serial
conversion

send stop bit, leave line
in ‘1’ condition

Check LSB value, send 0
or 1

right shift to send LSB to MSB

V 0.1 18

getch()
getch() -- receive one character
over software serial link

/* assume RB3 is Rx line */

unsigned char getch()
{

unsigned char c;
c = 0x00;

while(bittst(PORTB,3));
delay_onehalf_bit();

for(i=0;i<8;i++) {
delay_1bit()
if (bittst(PORTB,3)) c = c | 0x80;
if (i != 7) c = c >> 1;

}
return(c);

}

Wait for start bit
Wait until middle of bit
time

Input bit was ‘1’, set MSB.

Right shift as bits are sent
LSB to MSB

4

V 0.1 19

PIC16F873 USART
USART → Universal Synchronous Asynchronous Receiver
Transmitter

Hardware module in PIC that implements both synchronous
and asynchronous serial IO. We will use asynchronous mode.

Frees the processor from having to implement software delay
loops; receive/transmit done by USART while processor can
do other tasks. 16F873

TXREG

RCREG

USART
RC6/TX

RC7/RX

Will always use 8-bit,
no parity for PIC serial
IO.

V 0.1 20

USART Registers

• TXREG – holds a received character; read this to
get character

• RCREG – write to this register to send a character
• RCSTA – contains status bits for received

character
• SPBRG and TXSTA control baud rate

– TXSTA status bits also select between async/sync IO,
enable TX transmission

• PIR1 register contains status bits
– TXIF (transmit interrupt flag), ‘1’ if TXREG is empty
– RCIF (receive interrupt flag), ‘1’ if RCREG is full

V 0.1 21

RCIF, TXIF Bits

Will be a ‘1’ when RCREG has
a character.

Wait until RCIF=1, then read
RCREG to get received
character.

Will be a ‘0’ if TXREG is full
(last character written to
TXREG has not been sent yet).

Wait until TXREG=1, then
write character to TXREG

V 0.1 22

Transmit Hardware

Data sent LSB to MSB

Output Shift register, TXREG
is buffer register

TXREG is double-buffered. If TSR is empty, after write to
TXREG, then TXREG transferred to TSR and TREG empty
again (TXIF = 1). Do not have to wait for last character to
be sent before writing new character.

V 0.1 23

Receive Hardware

Two-deep
FIFO. Can
hold 2
characters,
while 3rd

character is
being shifted
into RSR
register.

RCREG is also a buffered register via 2 deep FIFO. This
gives the processor more freedom in how fast it responds
to received characters.

V 0.1 24

getch()/putch() (USART)
/* return 8 bit char
from Receive port */

unsigned char getch ()
{

unsigned char c;
/* wait until character

is received */

/* while (!RCIF) */
while (!bittst(PIR1,5));
c = RCREG;
return(c);

}

/* send 8 bit char to
Transmit port */

void putch (c)
unsigned char c;
{

/* wait until transmit
reg empty */

/* while (!TXIF) */

while (!bittst(PIR1,4));
TXREG = c;

}

These subroutines much simpler than software-based serial
I/O. The putch/getch single character functions is used by the
library function printf().

5

V 0.1 25

Baud Rate Control
The baud rate is controlled by the 8-bit value in the SBPRG
register and the BRGH bit (bit 2 in TXSTA register).

Baud_Rate = Fosc/ [K*(SBPRG+1)]

or

SBPRG = (Fosc/[K*Baud_Rate]) – 1

K = 16 if BRGH = 1 (high speed mode), then K = 16

K = 64 if If BRGH = 0 (low speed mode)

V 0.1 26

Baud Rate Examples

Desired baud rate of 9600, Fosc = 14.7456 MHz

What is SBPRG value for high speed mode?

SBPRG = (14.7456e06/[16*9600]) – 1
= 95

What is SBPRG value for low speed mode?

SBPRG = (14.7456e06/[64*9600]) – 1
= 23

V 0.1 27

Enabling Async Serial IO
1. Configure serial port pins (RC6/TX, RC7/RX) via SPEN bit

(RCSTA:7 =1). To be on the safe side, also set TRISC7=0,
TRISC6 =0, setting RC7, RC6 of the parallel port logic to
inputs.

2. Select high or low speed baud rate via BRGH bit (bit 2) of
TXSTA register

3. Select async mode SYNC bit (TXSTA:4 = 0)

4. Select 8-bit transmit via TX9 bit (TXSTA:6 = 0)

5. Select 8-bit receive via RX9 bit (RCSTA:6 = 0)

6. Enable transmit port via TXEN bit (TXSTA:5 = 1)

7. Enable receive port via CREN bit (RCSTA:4 = 1)
V 0.1 28

Example C code to Enable Serial I/O

/* setup Async communication */

bitset(RCSTA, 7); /* serial port enable */
bitset(TRISC, 7); /* RC7 input */
bitset(TRISC, 6); /* RC6 input */
bitset(TXSTA, 2); /* high speed mode */
SPBRG = 95; /* 9600 baud, high speed mode */
bitclr(TXSTA, 4); /* async mode */
bitclr(TXSTA, 6); /* 8-bit transmit */
bitclr(RCSTA, 6); /* 8-bit reception*/
bitset(TXSTA, 5); /* transmit enable*/
bitset(RCSTA, 4); /* enable receive */

At this point, ready to call getch()/putch() to perform serial IO.

V 0.1 29

Receive Error Conditions
• FERR bit (RCSTA:2) is set when a framing error

is detected
– A framing error occurs when a STOP bit is detected as

a ‘0’ value.
– This happens is actual baud rate slower than expected

baud rate.
• OERR bit (RCSTA:1) is set when an overrun error

is detected
– Waited too long to read RCREG and FIFO fills up
– Set when stop bit of 3rd byte is detected (2 bytes in

FIFO, and 3rd byte is shifted in)
– All receive activity is stopped; to reset, clear CREN

(RCSTA:4), then set CREN.
V 0.1 30

PIC to PC Serial IO Connection
16F873

RC6/TX

RC7/RX

MAX232

Tin Tout

Rout Rin
DB9 Female

Pin 2

Pin 3

Pin 5

RX

TX

Gnd

serial
cable
connected
to COM
port on PC

0v to 5v logic
levels EIA RS232 voltage

levels

logic ‘0’ : +3v to +25v

logic ‘1’: –3v to –25v
Note logic
inversion

6

V 0.1 31

What is EIA-RS232?
• An interface standard originally used to connect

PCs to modems
– A modem is a device used to send digital data over

phone lines
– The standard defines voltage levels, cable length,

connector pinouts, etc
• There are other signals in the standard beside TX,

RX, Gnd
– The other signals are used for modem control (Data

Carrier Detect, Ring Indicator, etc) and flow control
(flow control signals are used to determine if a device is
ready to accept data or not)

– We will not cover the other signals in the RS232
standard

V 0.1 32

MAXIM
232/232A

RS232
driver/receiver

Converts RS232 voltage
levels to digital levels and
vice-versa

External capacitors used
with internal charge pump
circuit to produce +/- 10V
from 5V supply

V 0.1 33

Hyperterminal
Will use Hyperterminal program on PC to communicate with PIC.

Under Programs→Accessories →Communications → Hyperterminal

When configuring Hyperterminal connection, must know port number
(COM1/COM2/etc), baud rate, data bits (8), parity (none), stop bits (1), and
flow control(none)

Very important to set flow control
to none since we are only using a
3-wire connection and not using
the handshaking lines in the RS232
standard. If you forget this, then
will not receive any characters.

On PC lab machines, use COM1

V 0.1 34

What do you have to know?
• Difference between async/sync serial IO
• Format of async serial IO frames
• Details of PIC 16F873 USART operation for

asynchronous IO
• Definitions of simplex, half-duplex, full-duplex
• What is meant by RS-232 and the need for

voltage conversion between RS-232 and digital
levels

• PIC16F873 to PC serial port interfacing

