
1

V 0.1 1

Extended Precision Operations
To represent larger numbers, more bits are needed.

N bits can represent the unsigned range 0 to 2N-1.

int0 to 65,5352 (16 bits)
0 to 4,294,967,295

0 to 255

Unsigned Range

long4 (32 bits)

char1 (8 bits)

C Data Type
(PIC16)

Bytes
1 Byte = 8 bits

The size of int, long depends on the C implementation; on some
machines both int and long are 4 bytes, with a short int being 2
bytes. On some machines a long is 8 bytes (64 bits).

V 0.1 2

Little Endian vs Big Endian

Address: 0x20 0x21 0x22 0x23 0x24 0x25

contents: 0x57 0xA4 0xF2 0x3D 0xB8 0x38

contents: 0xA4 0x57 0x38 0xB8 0x3D 0xF2

Byte-ordering for multi-byte integers can be stored
least significant to most significant (little endian)

or most significant to least significant (big endian)

int i; long j;

i = 0xA457;
j = 0x38B83DF2;

Assume i @ 0x20, and j@0x22

little endian

big endian

i j

V 0.1 3

Which is better?

• No inherent advantage to either byte ordering
• On 8-bit processors, it is the choice of the

programmer or compiler writer
– Be consistent!

• On processors that have 16-bit and 32-bit operations,
the µP architects choose the byte ordering
– Intel µPs use little endian, Motorola µPs uses big endian
– It is a religious argument....

• In these examples, will use little endian

V 0.1 4

Multi-byte values in MPLAB

int i;

i = 0xC428;

CBLOCK 0x040

i_low, i_high

ENDC

;; i = 0xC428

movlw 0x28
movwf i_low ; LSB = 0x28
movlw 0xC4
movwf i_high ;MSB = 0xC4

C code PIC16 assembly

Explicity named each
byte of i.

Arranged in little
endian order.

V 0.1 5

Multi-byte values in MPLAB

int i;

i = 0xC428;

CBLOCK 0x040

i:2

ENDC

;; i = 0xC428

movlw 0x28
movwf i ; LSB = 0x28
movlw 0xC4
movwf i+1 ;MSB = 0xC4

C code PIC16 assembly

Reserve two bytes of
space for i.

i refers to loc 0x20

i+1 refers to loc 0x21

V 0.1 6

16-bit Addition using Carry Flag

0x 34 F0

+ 0x 22 40

+C flag

0x 57 30

Add two LSBytes,

if Cflag =1 after addition, then increment (+1) MSByte before
MSByte addition

2

V 0.1 7

16-bit Addition

int i,j;

i = i + j;

C code PIC16 assembly
CBLOCK 0x040
i:2,j:2
ENDC

;; i = i + j

movf j,w ; w ← j (LSB)
addwf i,f ;i LSB ← w + i LSB

btfsc STATUS, C
incf i+1,f ;i MSB ← i MSB + 1

movf j+1,w ; w ← j (MSB)
addwf i+1,f ; i MSB← w +i MSB

LSByte adddition

if C=1, add 1 to
MSByte

MSByte adddition

V 0.1 8

16-bit Subtraction using Carry Flag

0x 34 10

- 0x 22 40

- ~C flag

0x 11 D0

Subtract two LSBytes,

if Cflag =0 after subtraction (a borrow), then decrement (-1)
MSByte before MSByte subtraction

V 0.1 9

16-bit Subtraction

int i,j;

i = i - j;

C code PIC16 assembly
CBLOCK 0x040
i:2,j:2
ENDC

;; i = i - j

movf j,w ; w ← j (LSB)
subwf i,f ;i LSB ← i LSB - w

btfss STATUS, C
decf i+1,f ;i MSB ← i MSB - 1

movf j+1,w ; w ← j (MSB)
subwf i+1,f ; i MSB← i MSB - w

LSByte subtraction

if C=0, subtract 1
from MSByte

MSByte subtraction

V 0.1 10

PIC18 Add/Sub with Carry
addwfc f, d ; d ← d + f + Cflag (add with carry)

subwfb f, d ; d ← f - d - ~Cflag (subtract with borrow)

movf j,w ; w ←j(LSB)
addwf i,f ;LSB addition

btfsc STATUS, C
incf i+1,f ;MSB+1

movf j+1,w ; w← j (MSB)
addwf i+1,f ;MSB addition

int i,j;

i = i + j; PIC16 assembly PIC18 assembly

movf j,w ; w ←j(LSB)
addwf i,f ; LSB addition

movf j+1,w ; w← j (MSB)
addwfc i+1,f ;MSB addition

MSByte, use add with carry

V 0.1 11

16-bit Increment/Decrement
On the PIC18, the increment/decrement instructions affect
the Carry flag, so can do increment/decrement of LSByte
followed by add-with-carry/subtract-with-borrow to MSByte.

On the PIC16, the increment/decrement instructions only
affect the Z flag, so cannot use C flag approach if incf/decf
used (can always just do add + 1). Use the procedure below:

0x33 FF

+ 1

0x34 00

If LSByte = 0 after increment,
then increment MSbyte

0x34 00

- 1

0x33 FF

If LSByte = 0 before increment,
then decrement MSbyte

V 0.1 12

16-bit Increment

int i;

i++;

C code PIC16 assembly
CBLOCK 0x040
i:2
ENDC

;; i++;

incf i,f ; i(LSB)+ 1

btfsc STATUS,Z ;Z=0?

incf i+1,f ;i MSB ← i MSB + 1

skip
...continue...

LSByte increment

if Z=0, continue

Z=1, so MSByte
increment

3

V 0.1 13

16-bit Decrement

int i;

i--;

C code PIC16 assembly
CBLOCK 0x040
i:2
ENDC

;; i--;

movf i,f; ; test LSByte

btfsc STATUS, Z

decf i+1; ; MSByte--

decf i; ; LSByte--

MSByte
decrement if
LSByte==0

decrement
LSByte

V 0.1 14

16-bit Right Shift/ Left Shift
Unsigned Right Shift (i >> 1)

Shift MSByte first, then LSByte. Use Carry flag to
propagate bit between bytes.

Cb7:b0 b7:b0

MSByte LSByte

Left Shift (i << 1)

Shift LSByte first, then MSByte. Use Carry flag to
propagate bit between bytes.

Cb7:b0 b7:b0

MSByte LSByte

V 0.1 15

16-bit Left Shift

int i;

i << 1;

C code PIC16 assembly
CBLOCK 0x040
i:2
ENDC

;; i << 1

bcf STATUS,C ;clear carry

rlf i ;i LSB << 1

rlf i+1 ;i MSB << 1

Clear carry for
first shift, use
carry to propagate
bit for second
shift.

V 0.1 16

16-bit Unsigned Right Shift

unsigned int i;

i >> 1;

C code PIC16 assembly
CBLOCK 0x040
i:2
ENDC

;; i >> 1

bcf STATUS,C ;clear carry

rrf i+1 ;i MSB >> 1

rrf i ;i LSB >> 1

Clear carry for
first shift, use
carry to propagate
bit for second
shift.

V 0.1 17

16-bit Logical Operations

int i,j;

i = i & j;

C code PIC16 assembly

movf j,w ; w ← j (LSB)
andwf i,f ;i LSB ← w && i LSB

movf j+1,w ; w ← j (MSB)
andwf i+1,f ; i MSB← w && i MSB

Bitwise logical operations on multi-byte values are
easy; just perform the same operation on each byte. The
order in which the bytes are computed does not matter.

V 0.1 18

Unsigned vs. Signed Operations
unsigned char i,j;

signed char i,j;

These modifiers determine if the
variables are treated as unsigned
or signed values (signed is
assumed if no modifier is present).
Signed values use two’s
complement representation.

Bitwise logical, addition,
subtraction, left shift (<<)

comparison, right shift (>>),
multiplication, division

Operations that work the same
for unsigned,unsigned

Operations that work differently
for signed, unsigned

4

V 0.1 19

Signed Right Shift (>>)
The value 0x80 = -128 in two’s complement.

Recall that right shift is same as divide by two. Then

-128 >> 1 == -128 / 2 == -64 == 0xC0

If unsigned right shift is performed (0 shifted into MSB), then
0x80 >> 1 == 0x40 == +64 , the wrong answer!!

When doing a signed right shift, the MSB must be kept the
same value (this is also known as an arithmetic right shift).
Makes sense, dividing a negative number by 2 should not
change the sign!!

b7 b6 b5 b4 b3 b2 b1 b0

V 0.1 20

Signed Right Shift in PIC16 Assembly

signed char i;

i >> 1;

C code

PIC16 assembly

;; i >> 1

bcf STATUS,C ;clear carry

btfsc i,7 ;sign bit =1?

bsf STATUS,C ;set carry

rrf i ;i >> 1

Set carry to be
same as sign bit
before shift.

V 0.1 21

Signed Left Shift (<<)?
There is no need for signed left shift. If the sign bit changes
due to the shift operation, then overflow occurs!

+32 * 2 = +64
0x20 << 1 == 0x40

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0
no overflow, +64 can
be represented in 8 bits

0x20

0x40

+64 * 2 = +128 0x40 << 1 == 0x80 = -128

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

overflow!! +128 cannot be
represented in 8 bits!
Multiplied positive number
by 2, got a negative number!

0x40

0x80
V 0.1 22

Signed Comparisons
The table below shows what happens if unsigned comparisons
are used for signed numbers in the case of ‘>’. If the numbers
have different signs, the comparison gives the wrong result.

Truei = 1,
j = -1

Falsei = 1,
j = 255

i = 0x01
j = 0xFF

Falsei = -128,
j = +127

Truei = 128,
j = 127

i = 0x80,
j = 0x7F

Falsei = -128,
j = -1

Falsei = 128,
j = 256

i = 0x80,
j = 0xFF

Truei = +127,
j = +01

Truei = 127,
j = 01

i = 0x7f,
j = 0x01

i > j?As signedi > j?As unsignedNumbers

V 0.1 23

PIC16: Signed Comparisons
0x00
0

0

0x7f
127

+127

0x80
128

-128

0xFF
256

-1

i

-i

j

+j
Unsigned i > j true if i is to left of j,

need for -i and +j to swap places if want to use
unsigned comparison

0x00
0

0

0x7f
127

+127

0x80
128

-128

0xFF
256

-1 -i +j

Swap sides of -i, +j by complementing sign bits
V 0.1 24

PIC16: Signed Comparison Algorithm #1

Steps for i > j signed comparison

1. Load j into w reg.

2. Complement w sign bit by XOR’ing with 0x80.

3. Store in temporary location (you pick), call this temp.

4. Load i into w reg.

5. Complement w sign bit by XOR’ing with 0x80.

6. Subtract w from temp (new j - new i).

7. If carry = 0, then i > j
Unsigned compare

operand adjustment

5

V 0.1 25

Signed Compare (>, Alg #1)

signed char i,j;

if (i > j) {
i = i + j;

}

/* do stuff */

C code

movf j,w ; w ← j
xorlw 0x80 ; toggle j sign bit
movwf temp ; save new j
movf i,w ; w ← i
xorlw 0x80 ; toggle i sign bit
subwf temp,w ; w← new j-new i
btfsc STATUS,C
goto skip ;C=1, j>= i

ifbody
movf j,w
addwf i,f ;i = i + j

skip
;; do stuff...

PIC16

Must use temporary
location because do
not want to modify
j!!!! Requires 8
instructions, not
counting if body. V 0.1 26

PIC16: Signed Comparison, Algorithm #2

Steps for i > j signed comparison

1. Load j into w reg.

2. XOR w with i, store in w

3. If bit 7 = 0, then both signs the same. Goto 5, do
unsigned compare.

4. If bit 7 of j = 1, then j is negative, so i > j!

5. Load i into w reg

6. Subtract w from j (j - i).

7. If carry = 0, then i > j

Unsigned compare

check if signs equal

V 0.1 27

Signed Compare (>, Alg. #2)

signed char i,j;

if (i > j) {
i = i + j;

}

/* do stuff */

C code movf j,w ; w ← j
xorwf i,w ; w ← j ^ i
btfss WREG,7
goto docmp ; unsigned cmp
btfss j,7 ; check j sign
goto skip ; j pos, so i < j
goto ifbody ; j neg, so i > j

docmp
movf i,w ; w ← i
subwf j,w ; w← j- i
btfsc STATUS,C
goto skip ;C=1, j>= i

ifbody
movf j,w
addwf i,f ;i = i + j

skip
;; do stuff...

PIC16

Does not need
temporary location,
but requires more
instructions (11 vs. 8)

V 0.1 28

PIC18 Signed Compare
The PIC18 added two additional flags

V (overflow flag), set on two’s complement overflow
N (negative flag), set if MSB = 1 after operation

Also added branches based on single flag conditions:

bc (branch if carry), bnc (branch if not carry)
bov (branch on overflow), bnov (branch if no overflow)
bn (branch if negative), bnn (branch if not negative)
bz (branch if zero), bnz (branch if not zero)
bra (branch always)

A branch functions as a conditional goto, will discuss exact
operation later.

V 0.1 29

Using N,V flags for Signed Compare
To compare i > j, perform j – i

After j-i, if V = 0 (correct result, no overflow)
if N=1 (result negative) then i > j

else N=0 (answer positive) so j >= i

After j-i, if V = 1 (incorrect result)
if N=0 (result positive) then i > j

else N=1 (result negative) so j >= i

Most processors have unsigned compare instructions (operate
from Z, C flags) and signed compare instructions (operate from Z,
N, V flags). The PIC18 only has unsigned compare instructions
(cpfsgt, cpfslt) but does have the V,N and branches based on these
flags. The PIC16 only has Z,C flags and no dedicated compare
instructions. V 0.1 30

PIC18 Signed Compare (Assembly)

signed char i,j;

if (i > j) {
i = i + j;

}

/* do stuff */

C code

movf i,w ; w ← i
subwf j,w ; w ← j - i
bvs v_1
bnn skip ; V=0,N=0 j>=i
bra ifbody; V=0,N=1

v_1
bn skip ; V=1, N=1 j>=i

ifbody ;V=1,N=0
movf j,w
addwf i,f ;i = i + j

skip
;; do stuff...

PIC18

Does not need a
temporary location,
requires 6 instructions
outside of if body.

6

V 0.1 31

What do you need to know?

• PIC16 extended precision operations for logical,
addition/subtraction, increment/decrement, shift
left, shift right

• PIC18 add with carry, subtract with borrow
• PIC16 methods for signed comparison
• How to use N,V flags of PIC18 for signed

comparison

