
1

V 0.1 1

Bit-wise Logical operations
Bitwise AND operation

(w AND f) andwf floc, d d ← [floc] & w j = j & i;
(w AND literal) andlw k w ← 0xkk & w j = j & 0xkk;

Bitwise OR operation

(w OR f) iorwf floc, d d ← [floc] | w j = j | i;
(w OR literal) iorwf floc, d d ← 0xkk | w j = j | 0xkk;

Bitwise XOR operation

(w XOR f) xorwf floc, d d ← [floc] ^ w j = j ^ i;
(w XOR literal) xorwf floc, d d ← 0xkk ^ w j = j ^ 0xkk

Bitwise complement operation;

(~ f) comf floc, d d ← ~ [floc] j = ~ i ;
V 0.1 2

Clearing a group of
bits Location contents

(i) 0x20 0x2C

Data Memory

(j) 0x21 0xB2
(k) 0x22 0x8A

Clear upper four bits of i .

In C:
i = i & 0x0f;

In PIC assembly

movf 0x20, w ; w = i
andlw 0x0f ; w = w & 0x0f
movwf 0x20 ; i = w

i = 0x2C = 0010 1100
&&&& &&&&

mask= 0x0F = 0000 1111

result = 0000 1100
= 0x0C

AND: mask bit = ‘1’, result bit is same as operand.
mask bit = ‘0’, result bit is cleared

The ‘mask’

V 0.1 3

Setting a group of
bits Location contents

(i) 0x20 0x2C

Data Memory

(j) 0x21 0xB2
(k) 0x22 0x8A

Set bits b3:b1 of j

In C:
j = j | 0x0E;

In PIC assembly

movf 0x21, w ; w = j
iorlw 0x0E ; w = w | 0x0E
movwf 0x21 ; j = w

j = 0xB2 = 1011 0010
|||| ||||

mask= 0x0E = 0000 1110

result = 1011 1110
= 0xBE

OR: mask bit = ‘0’, result bit is same as operand.
mask bit = ‘1’, result bit is set

The ‘mask’

V 0.1 4

Complementing a
group of bits Location contents

(i) 0x20 0x2C

Data Memory

(j) 0x21 0xB2
(k) 0x22 0x8A

Complement bits b7:b6 of k

In C:
k = k ^ 0xC0;

In PIC assembly

movf 0x22, w ; w = k
xorlw 0xC0 ; w = w ^ 0xC0
movwf 0x22 ; k = w

k = 0x8A = 1000 1010
^^^^ ^^^^

mask= 0xC0 = 1100 0000

result = 0100 1010
= 0x4A

XOR: mask bit = ‘0’, result bit is same as operand.
mask bit = ‘1’, result bit is complemented

The ‘mask’

V 0.1 5

Complementing all
bits Location contents

(i) 0x20 0x2C

Data Memory

(j) 0x21 0xB2
(k) 0x22 0x8A

Complement all bits of k

In C:
k = !k ;

In PIC assembly

comf 0x22, f ; k = !k

k = 0x8A = 1000 1010

After complement

result = 0111 0101
= 0x75

V 0.1 6

Bit set, Bit Clear instructions

bcf floc, b 0 1 0 0 b b b k k k k k k k

B B B B B B B B B B B B B B
1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0

Can set/clear one bit of a data memory location by using the
AND/OR operations, but takes three instructions as
previously seen.

The bit clear (bcf) and bit set (bsf) instructions clear/set one
bit of data memory using one instruction.

bsf floc, b 0 1 0 1 b b b k k k k k k k

‘kkkkkkk’ lower 7-bits of memory location
‘bbb’ three bit value that specifies affected bit

2

V 0.1 7

Bit clear/set
examples Location contents

(i) 0x20 0x2C

Data Memory

(j) 0x21 0xB2
(k) 0x22 0x8A

Clear b7 of k, Set b2 of j

In C:
k = k & 0x7F;
j = j | 0x04;

In PIC assembly

bcf 0x22, 7 ; k = bitclear(k,7)
bsf 0x21, 2 ; j = bitset(j,2)

bbbb bbbb
7654 3210

k = 0x8A = 1000 1010
bitclear(k,7)
k = 0x8A = 0000 1010

j = 0xB2 = 1011 0010
bitset(j,2)
j = 0xB6 = 1011 0110

V 0.1 8

Changing Register
Banks

The file registers are split
into 4 banks, each bank has
128 locations (0x80).

The lower 7-bits of a
location are specified in the
machine code.

But need two more bits to
specify the bank!!!

These bits are located in the
status register (location 0x3)
and the default value is 00
(bank 0).

V 0.1 9

status Register
The status register is a special purpose register (like the w
register). Each bit in the status register has a particular
meaning, and either controls an operation mode of the PIC or
indicates the status of an operation.

Table 2-1 in the PIC 16F873 data sheets contains the definitions
of all special registers. We will cover the special registers as we
get to the features of the PIC that use them.

V 0.1 10

Bank Select Bits (RP1:RP0)
Bits b6:b5 of the status register are known as RP1:RP0 and
control the bank selection when the register file is
accessed.

The status of
the RP1:RP0
must be known
to determine
what data
memory
location is
accessed.

V 0.1 11

Bank Selection
Example Location contents

(i) 0xA0 0x2C

Data Memory

(j) 0xA1 0xB2
(k) 0xA2 0x8A

Complement bits b7:b6 of k

In C:
k = k ^ 0xC0;

In PIC assembly

movf 0xA2, w ; w = k
xorlw 0xC0 ; w = w ^ 0xC0
movwf 0xA2 ; k = w

The ‘mask’

Locations now in
Bank1

Upper bit of address is ignored, only works if RP1:RP0 = 01

V 0.1 12

Bank Selection
Example (cont) Location contents

(i) 0xA0 0x2C

Data Memory

(j) 0xA1 0xB2
(k) 0xA2 0x8A

Complement bits b7:b6 of k

In C:
k = k ^ 0xC0;

In PIC assembly

bsf 0x3, 5 ; RP0 = 1
movf 0xA2, w ; w = k
xorlw 0xC0 ; w = w ^ 0xC0
movwf 0xA2 ; k = w
bcf 0x3, 5 ; RP0 = 0

The ‘mask’
Locations now in
Bank1

Status register at
location 0x3. Change
to bank 1 via RP0 = 1,
assume RP1 already 0

Change back to bank0,
not necessary, but a safe
practice.

3

V 0.1 13

Using Labels for Clarity
INCLUDE "p16f873.inc"

; Register Usage
CBLOCK 0x0A0
i, j,k

ENDC

org 0
; k = k ^ 0xC0;

bsf STATUS,RP0
movf k ; w <- k
xorlw 0xC0 ; w <- w^0xC0
movwf k ; k <- w
bcf STATUS, RP0

here
goto here ; loop forever
end

Bank1 space

Labels defined in
“p16F873.inc”. Improves
code clarity.

Labels defined for special
bits, registers in
“p16F873.inc” are all
uppercase, match
datasheet names as closely
as possible.

V 0.1 14

Carry, Zero Flags
Bit 0 of the status register is known as the carry (C) flag.

Bit 2 of the status register is known as the zero (Z) flag.

These flags are set as side-effects of particular instructions or
can be set/cleared explicitly using the bsf/bcf instructions.

How do you know if an instruction affects C,Z flags?

Look at Table 13-2 in PIC datasheeet.– addwf affects C, DC,
Z flags.

V 0.1 15

Addition: Carry, Zero Flags

In addition, carry flag is set if there is a carry out of the MSB
(unsigned overflow, result is greater > 255)

0xF0
+0x20

0x10 Z=0,

C=1

Zero flag is set if result is zero.

0x00
+0x00

0x00 Z=1,

C=0

0x01
+0xFF

0x00 Z=1,

C=1

0x80
+0x7F

0xFF Z=0,

C=0

V 0.1 16

Subtraction: Carry, Zero Flags

In subtraction, carry flag is cleared if there is a borrow from the
MSB (unsigned underflow, result is < 0, larger number subtracted
from smaller number). Carry flag is set if no borrow occurs.

0xF0
- 0x20

0xD0 Z=0,

C=1

Zero flag is set if result is zero.

0x00
-0x00

0x00 Z=1,

C=1

0x01
-0xFF

0x02 Z=0,

C=0

For a subtraction, the combination of Z=1, C=0 will not
occur.

V 0.1 17

Conditional Execution using Bit Test
The ‘bit test f, skip if clear’ (btfsc) and ‘bit test f, skip if set’
(btfss) instructions are used for conditional execution.

btfsc floc, b ; skips next instruction is bit ‘b’ of floc is clear (‘0’)

btfss floc, b ; skips next instruction is bit ‘b’ of floc is set (‘1’)

Bit test instructions used on status flags implements
tests such as equality (==), inequality (!=), greater than
(>), less than (<), greater than or equal (<=) , less than
or equal (>=)

V 0.1 18

Equality Test (==)

unsigned char i,j;

if (i == j) {
j = i + j;

}
/* ..do stuff..*/

C code PIC Assembly

movf i,w ; w ← i
subwf j,w ; w ← j – w
btfss STATUS, Z ; Z=1?
goto skip ; Z=0, i != j
movf i,w ; w ← i
addwf j,f ; j ← j + w

skip

..do stuff..

Subtraction operation of j-i performed to check equality; if i
== j then subtraction yields ‘0’, setting the Z flag.

4

V 0.1 19

Unsigned greater-than Test (>)

unsigned char i,j;

if (i > j) {
j = i + j;

}
/* ..do stuff..*/

C code PIC Assembly

movf i,w ; w ← i
subwf j,w ; w ← j – i
btfsc STATUS, C ; C=0?
goto skip ; C=1,i <= j
movf i,w ; w ← i
addwf j,f ; j ← j + w

skip

..do stuff..

If i > j, then j-i will result in a borrow (C=0). Subtraction
operation of j-i performed so test on C flag could be done.

V 0.1 20

Unsigned greater-than-or-equal Test (>=)

unsigned char i,j;

if (i >= j) {
j = i + j;

}
/* ..do stuff..*/

C code PIC Assembly

movf j,w ; w ← j
subwf i,w ; w ← i – j
btfss STATUS, C ; C=1?
goto skip ; C=0,i < j
movf i,w ; w ← i
addwf j,f ; j ← j + w

skip

..do stuff..

If (i >= j), then i – j will produce no borrow if i > j or i == j.

V 0.1 21

Zero/Non-Zero Test

unsigned char i,j;

if (!i) {
/* do this if i

zero */
j = i + j;

}
/* ..do stuff..*/

C code PIC Assembly

movf i,f ; i ← i
btfss STATUS, Z ; Z=1?
goto skip ; Z=0, i!=0
movf i,w ; w ← i
addwf j,f ; j ← j + w

skip

..do stuff..

The movf instruction just moves i back onto itself! Does no
useful work except to affect the Z flag.

V 0.1 22

Aside: C conditional tests
A C conditional test is true if the result is non-zero; false if
the result is zero.

The ! operator is a logical test that returns 1 if the operator is
equal to ‘0’, returns ‘0’ if the operator is non-zero.

if (!i) {
/* do this if i zero */

j = i + j;
}

if (i) {
/* do this if i non-zero */

j = i + j;
}

Could also write:
if (i == 0) {
/* do this if i zero */

j = i + j;
}

if (i != 0) {
/* do this if i non-zero */

j = i + j;
}

V 0.1 23

C equality tests
A common C code mistake is shown below (= vs ==)

if (i = 5) {
j = i + j;

} /*wrong*/

if (i == 5) {
j = i + j;

} /*right*/

Always executes
because i=5 returns 5,
so conditional test is
always non-zero, a true
value. The = is the
assignment operator.

The test i == 5 returns a
1 only when i is 5. The
== is the equality
operator.

V 0.1 24

while loop

unsigned char i,j;

while (i > j) {
j = i + j;

}
/* ..do stuff..*/

C code PIC Assembly

loop_top
movf i,w ; w ← i
subwf j,w ; w ← j – i
btfsc STATUS, C ; C=0?
goto skip ; C=1,i <= j
movf i,w ; w ← i
addwf j,f ; j ← j + i
goto loop_top

skip

..do stuff..

Jump back to loop_top after body is performed. The body
of a while loop may not execute if loop test is initially
false.

5

V 0.1 25

do-while loop

unsigned char i,j;

do {
j = i + j;

}while (i > j)
/* ..do stuff..*/

C code PIC Assembly

loop_top
movf i,w ; w ← i
addwf j,f ; j ← j + i
; conditional test
movf i,w ; w ← i
subwf j,w ; w ← j – i
btfss STATUS, C ; C=1?
goto loop_top ; C=0,i >j

skip

..do stuff..

In do-while loop, body is always executed at least once.

V 0.1 26

Aside: for loops in C

A for loop is just another way to write a while loop.
Typically used to implement a counting loop (a loop that is
executed a fixed number of times).

unsigned char i,j;

i = 0;
while (i != 10) {

k = k + j;
i++;

}
/* ..do stuff..*/

unsigned char i,j;

for (i = 0; i!= 10; i++){
k = k + j;

}
/* do stuff */

These statements executed 10 times. Both code blocks
are equivalent.

executed once,
before test.

executed each
loop iteration
after body

loop test

V 0.1 27

Decrement/Increment, skip if 0
For simple counting loops, where goal is to execute a block of
statements a fixed number of times, the ‘decrement/increment,
skip if 0’ instructions can be useful.

decfsz floc ; decrement floc, skips next instruction if result == 0

incfsz floc ; increment floc, skips next instruction if result == 0

Can use these for counting loops; replaces multiple
instructions with single instruction. The reason to use these
instructions would be to save code space, and decrease loop
execution time.

V 0.1 28

Counting Loop Example

unsigned char i,j;

i = 10;
do {

k = k + j;
i--;

}while(i != 0);
/* do stuff */

C code PIC Assembly

movlw 0x0A
movwf i ; i = 10

loop_top
movf j,w ; w ← j
addwf k,f ; k ← k + j
decfsz i ; i--, skip if 0
goto loop_top ; i non-zero

..do stuff..

Makes for an efficient end-of-loop action and test in some
cases. Usage of incfsz/decfsz is optional as other instruction
sequences can accomplish the same thing. Use what you
understand!!!

V 0.1 29

C unsigned Shift Left, Shift Right
unsigned Shift right i >> 1
all bits shift to right by one, ‘0’ into MSB.

b7 b6 b5 b4 b3 b2 b1 b0 original value

0 b7 b6 b5 b4 b3 b2 b1 i >> 1 (right shift by one)

unsigned Shift left i << 1
all bits shift to left by one, ‘0’ into LSB.

b7 b6 b5 b4 b3 b2 b1 b0 original value

b6 b5 b4 b3 b2 b1 b0 0 i << 1 (left shift by one)
V 0.1 30

PIC Rotate Left/Right
PIC has rotate right by 1 and rotate left by 1 instructions

b7 b6 b5 b4 b3 b2 b1 b0Cflag

rrf floc, d ; d shifted to right by 1, MSB gets C flag,
LSB goes into C flag

rotate
right

b7 b6 b5 b4 b3 b2 b1 b0Cflag

rlf floc, d ; d shifted to right by 1, LSB gets C flag,
MSB goes into C flag

rotate
left

6

V 0.1 31

Rotate Left/Right Examples

unsigned char i,j,k;

i = i >> 1;

j = j << 1;

k = k >> 3;

C code PIC Assembly

bcf STATUS,C ; clear C
rrf i,f ; i >> 1

bcf STATUS,C ; clear C
rlf j,f ; j << 1

bcf STATUS,C ; clear C
rrf k,f ; k >> 1
bcf STATUS,C ; clear C
rrf k,f ; k >> 1
bcf STATUS,C ; clear C
rrf k,f ; k >> 1

For multiple shift,
repeat single shift.
Must clear C flag as
status is unknown
usually. V 0.1 32

Why Shift?
Shift right by 1 is divide by 2 (i >> 1 == i / 2)

Shift left by 1 is multiply by 2 (i << 1 == i * 2)

If need to multiply a variable by
a constant can do it by shifts,
adds or shifts/subtracts.

i = i * 7
= i (8 – 1)
= (i * 8) - i
= (i << 3) - i

bcf STATUS,C ; clear C
rlf i,f ; i << 1
bcf STATUS,C ; clear C
rlf i,f ; i << 1
bcf STATUS,C ; clear C
rlf i,f ; i << 1
movf i,w ; w ← i
subwf i,f ; i ← i –w

;; new i is old_i * 7

V 0.1 33

PIC18 Comparison Instructions
The PIC18 has three instructions that directly implement ==,
> (unsigned), and < (unsigned).

cmpfseq floc ; if floc == w, skip next instruction

cmpfsgt floc ; if floc > w, skip next instruction

cmpfslt floc ; if floc < w, skip next instruction

Instructions like this are commonly found in other µP
instruction sets.

V 0.1 34

PIC18 comparison example (==)
if (i == j) {

j = i + j;
}

PIC 18 assemblyPIC16 Assembly
movf i,w ; w ← i
subwf j,w ; w ← j – i
btfss STATUS, Z ; Z=1?
goto skip ; Z=0,i != j
movf i,w ; w ← i
addwf j,f ; j ← j + w

skip
..do stuff..

movf i,w ; w ← i
cmpfseq j ; j == i?
goto skip ; j != i
addwf j,f ; j ← j + i

skip
..do stuff..

C code

PIC 18 cmpfseq instruction does not change w, so w still has i in it
for addwf instruction. Takes four PIC16 instructions vs six PIC18
instructions.

V 0.1 35

What do you need to know?
• Logical operations (and,or,xor, complement)
• Clearing/Setting/Complementing groups of bits
• Accessing different banks via RP1, RP0
• Bit set/clear/test instructions
• ==, !=, >, <, >=, <= tests on unsigned variables
• Loop structures
• Shift left (>>), Shift Right (<<) using rotate

instructions
• Multiplication by a constant via shifts/adds/subtracts
• PIC18 unsigned comparison

