
1

V 0.1 1

ECE/CS 3724 - Microprocessors
• All class-related material is at:

http://www.ece.msstate.edu/~reese/ece3724

• Most of the course lecture notes are linked to
WWW page -- print them out before class and
bring them to lecture

• Be sure to read the class Policy/Syllabus, and
follow the link to the ECE 3724 LAB page

• Lots of material in this class - don’t fall behind!

V 0.1 2

Approaches to Digital System Design

• In Digital Devices, you learned how to create a
logic network (Flip-flops + combinational gates)
to solve a problem
– The logic network was SPECIFIC to the problem. To

solve a different problem, needed a different logic
network

• Another approach is to design a logic network that
can used to solve many different problems
– This general purpose logic network might not be as

efficient (speed, cost) as a special purpose logic
network, but hopefully can be used to solve multiple
problems!

V 0.1 3

A Computer!!
• A Computer is a digital system whose operation

can be specified via a Program .
– Changing the program changes the computer behavior!

(solves a different problem!!!).

• A Program is simply a sequence of binary codes
that represent instructions for the computer. The
Program is stored in a Memory .

• External inputs to the Computer can also alter the
behavior the computer. The computer will have
Outputs that can be set/reset via program
instructions.
– These external inputs/output are know as the I/O

section of the computer. V 0.1 4

Components of any Computer System
• Control – logic that controls fetching/execution of

instructions
• Memory – area where instructions/data are stored
• Input/Output – external interaction with computer

C
o
n
t
r
o
l

Memory

Address bus

Databus bus

Input/Output
devices

V 0.1 5

Problem Definition
Build a Digital System based upon your Student ID number
(SID).

The Digital System will have one external input called ODD.

If ODD is true, then the system will reset to display the
LEFTMOST odd digit in your SID, and then the output will
sequence over the odd digits in your SID, skipping over the
even digits.

If ODD is false, then the system will reset to display the
LEFTMOST even digit in your SID, and then the output will
sequence over the even digits in your SID, skipping over the
odd digits.

V 0.1 6

Two Approaches for Solving this Problem
Finite State Machine

Will only work for
one SID sequence

Combinational
Logic
Circuit

Memory Element

n m

k k

k-bit
Present State

Value

k-bit
Next State

Value

Inputs Output
s

C
o
n
t
r
o
l

Memory

Address bus

Databus bus

Input/Output
devices

Computer System

Will only work for
any SID sequence,
change program to
change sequence

2

V 0.1 7

ASM chart for 458 70 2198

odd?0 1

Dout = 4 Dout = 5

S0

Dout = 8

Dout = 0

Dout = 2

Dout = 8

Dout = 7

Dout = 1

Dout = 9

S1

S2

S3

S4

S5

S6

S7

Odd only affects sequence in State S0 (Reset state)
V 0.1 8

FSM Implementation
Use 3 D-FFs for the 8 states.
Use Binary State Encoding: S0=000, S1=001, S2=010,
etc… S7 = 111

Combinational
Logic
Circuit

Dffs

SID[3:0]

3

3
4-bit

Present State
Value

4-bit
Next State

Value

Odd Outputs

DQ
Clk

Alcr

RLogic designed for
a particular SID sequence.

V 0.1 9

Computer System Implementation
What do We Need?
Input/Output First

4

SID[3:0]

Odd

SID[3:0] - 4 bit output bus that has the value of the SID
digit

odd – 1 bit input that controls whether or not even or odd
sequence is displayed

V 0.1 10

Register for holding SID output value

4

SID[3:0]DIN

4

ld

R
E
G

aclr
Odd

Register loads DIN on rising clock edge when ld = 1.

Aclr is an asynchronous clear.

V 0.1 11

Memory for holding instructions

4

SID[3:0]DIN

4

ld

R
E
G

aclr

Odd

M
E
M

Data[?:0]Address[?:0]

Memory is KxN (K locations, each location N bits wide).
Don’t know values of K, N yet.

V 0.1 12

Register for specifying address – Use counter

4

SID[3:0]Din[3:0]

4

ld

R
E
G

aclr

Odd

M
E
M

Data[?:0]Addr[?:0]
?

ld

c
n
t
ren

aclr

Counter increments on rising clock edge when en = 1.
Loads on rising clock edge when ld = 1. Aclr is an
asynchronous clear.

Din[?:0]

3

V 0.1 13

What Instructions do we need?
Start:
If (Odd = 1) goto Odd_start
Even_start:

output even digit #1
output even digit #2
……
output last even digit
goto Start

Odd_start:
output odd digit #1
output odd digit #2
…..
output last odd digit
goto Start

Psuedo Code for
operations

V 0.1 14

Needed Instructions
1. Jc location Jump conditionally

If odd = 1, then jump to location (counter set
equal to specified location).

If odd = 0, then fetch next instruction
(counter increments by 1).

2. Jmp location Jump unconditional
Fetch next instruction from location (counter
loaded with specified location).

3. out data
load output register with data. Used for

setting the SID[3:0] value.

V 0.1 15

Instruction Encoding
The binary encoding for instructions is usually divided into
different fields; with each field representing part of the
information needed by the instruction.

Our instructions require two fields: Operation Code and Data
Opcode | Data

How many bits for the Opcode? Have 3 instructions, need at
least 2 bits! (2 bits can encode 22 items)

How many bits for Data? The data field must specify the 4 bits
for the SID number, and also specify a memory location. For
now, lets use 4 bits for data. Instruction is 6 bits total.

Opcode | Data

I5 I4 I3 I2 I1 I0

V 0.1 16

Instruction Table

0 0 | 4-bit locationJMP location

I5 I4 I3 I2 I1 I0

0 1 | 4-bit locationJC location

1 0 | 4-bit dataOUT data

Note that Opcode = 11 is unused.

Also, the opcode assignments were arbitrary; we could have
easily chosen some other assigment

(such as OUT=00, JC=00, JMP=01)

V 0.1 17

A Program for SID = 458 70 2198

Start: JC odd_start ; jmp only if odd input=1
OUT 4
OUT 8
OUT 0
OUT 2
OUT 8
JMP Start

Odd_start: OUT 5
OUT 7
OUT 1
OUT 9
JMP Start

V 0.1 18

Convert Program to Binary, Put in Memory

JMP Start (loc 0)00 00000B
OUT 910 10010A
OUT 110 000109
OUT 710 011108

Odd_start: OUT 510 010107
JMP Start (loc 0)00 000006
OUT 8 10 100005
OUT 210 001004
OUT 010 000003
OUT 810 100002
OUT 410 010001

Start: JC Odd_start (loc 7)01 011100
InstructionMem ContentsMem Location

4

V 0.1 19

Add Decode Logic to Execute Instructions

4

SID[3:0]Data[3:0]

4

ld

R
E
G

aclr

M
E
M

Data[5:0]Addr[3:0]
4

ld

c
n
t
ren

aclr

Data[3:0]D
E
C
O
D
E

Data[5:4]

c_en
c_ld

r_ld
odd

Op[1:0] 16 x 6

V 0.1 20

What is Decode Logic?
Decode logic controls count register, out register based on Op
code value (op[1:0] = Data[5:4]).

When does out register get loaded? When OP = 10!! (OUT
instruction):
VHDL:

r_ld <= ‘1’ when (op = “10”) else ‘0’;

When does Counter Load? When JMP instruction (OP=00) or
when JC instruction and Odd = ‘1’!!!!

c_ld <= ‘1’ when (op=“00” or (op = “01” and odd=‘1’))
else ‘0’;

When does counter increment? When NOT Loading!!
c_en <= not (c_ld);

V 0.1 21

Decode Boolean Equations

r_ld <= op(1) -- don’t really need op(0)

c_ld <= ((not op(1)) and (not op(0)) or
((not op(1)) and op(0) and odd));

c_en <= not (c_ld);

V 0.1 22

Timing
CLK

r_ld

Aclr

SID

Abus

Dbus

0 1 2 3 4 5 6 0

c_ld

odd

010111 100100

0 4 8 0 2 8

101000 100000 100010 101000 000000 010111

7

100101

V 0.1 23

Timing (cont.)
CLK

r_ld

Aclr

SID

Abus

Dbus

5 6 0

c_ld

odd

2 8

101000 000000 010111

7 8 9 A B 0

5 7 1 9

100101 100111 100001 101001 000000 010111

1

V 0.1 24

Comments

• Notice that the aclr line forces the processor to
fetch its first instruction from location 0.
– All processors have a RESET line like this to force the

first instruction fetch from a particular location.
• Notice that execution never stops!!! Processor is

always fetching, executing instructions!
• Called the Fetch,Execute loop.
• Must make sure that memory is loaded with valid

instructions BEFORE execution starts!!!

5

V 0.1 25

Instruction Pointer
• The counter in this processor is a special purpose

register that exists in one form or another in every
processor

• Usually is called the Instruction Pointer (IP)
register or Program Counter (PC) register.

• This register contains the address of the next
instruction to be fetched.
– Normal operation is to fetch very next instruction in memory
– Jump instructions change the IP value so that fetch occurs from

some non-sequential memory location

V 0.1 26

Implementation Comparisons
• FSM Implementation

– Only 3 D-FFs + combinational logic
– Will only do one SID sequence
– Will operate a faster clock rate than Processor

implementation because of simpler logic
• Processor Implementation

– Many more gates needed than FSM implementation
– Will execute at a slower clock rate than FSM
– General purpose: can implement any SID sequence by

simply changing program.
• MANY applications are better suited for

implementation by general purpose digital systems
(Processors) than by dedicated logic

V 0.1 27

Vocabulary
• Address bus – input bus to memory device

specifying location of data to read/write
• Data bus – input/output bus to memory device

containing data value being read or written.
• Instruction Pointer – special register in a

processor specifying address of next instruction to
be executed.

• Instruction Mnemonic – the ascii representation of
an instruction (I.e., OUT 4).

• Machine Code – the binary representation of an
instruction (I.e OUT 4 = 010100)

V 0.1 28

Vocabulary (cont.)
• Operation code (Op code) – the part of the

machine code for an instruction that tells what the
instruction is (JMP = 00).

• Assembly – the process of converting instructions
to their machine code representation

OUT 4 → 10 0100
• Disassembly – the process of converting machine

code to its instruction mnemoic
10 0100 → OUT 4

• Fetch/Execute - what processors do all day long
(fetch instruction from memory, execute it).

V 0.1 29

How are Commercial Processors
different from SID Processor?

• SID processor had 4-bit registers. Com. processors have
registers with widths from 8 bits to 128 bits wide.

• SID processor has 2 registers. Com. proc have many
registers, some general purpose, some special purpose.

• SID processor has 3 instructions. Com. Proc have 10’s to a
few hundred instructions (arithmetic, logical, control,
Input/output, data movement,etc).

• SID processor could address 16 memory locations. Com.
Proc can address billions of memory locations.

• SID processor can be implemented in a few 10’s of gates.
Com. Processors can take millions of gates to implement.

V 0.1 30

What do you need to know?

• Differences between specific logic networks and
general purpose logic networks for digital
systems.

• Basics of a computer system
• Logic Structure, timing of our SID sequence

processor
• Instruction assembly,disassembly, execution of

SID sequence processor
• Vocabulary

