
1

V 0.1 1

Binary Representation
• The basis of all digital data is binary representation.
• Binary - means ‘two’

– 1, 0
– True, False
– Hot, Cold
– On, Off

• We must be able to handle more than just values for
real world problems
– 1, 0, 56
– True, False, Maybe
– Hot, Cold, LukeWarm, Cool
– On, Off, Leaky

V 0.1 2

Number Systems
• To talk about binary data, we must first talk about

number systems
• The decimal number system (base 10) you should

be familiar with!
– A digit in base 10 ranges from 0 to 9.
– A digit in base 2 ranges from 0 to 1 (binary number

system). A digit in base 2 is also called a ‘bit’.
– A digit in base R can range from 0 to R-1
– A digit in Base 16 can range from 0 to 16-1

(0,1,2,3,4,5,5,6,7,8,9,A,B,C,D,E,F). Use letters A-F to
represent values 10 to 15. Base 16 is also called
Hexadecimal or just ‘Hex’.

V 0.1 3

Positional Notation
Value of number is determined by multiplying each digit by a
weight and then summing. The weight of each digit is a
POWER of the BASE and is determined by position.

953.78 = 9 x 102 + 5 x 101 + 3 x 100 + 7 x 10-1 + 8 x 10-2

= 900 + 50 + 3 + .7 + .08 = 953.78

% 1011.11 = 1x23 + 0x22 + 1x21 + 1x20 + 1x2-1 + 1x2-2

= 8 + 0 + 2 + 1 + 0.5 + 0.25
= 11.75

$ A2F = 10x162 + 2x161 + 15x160

= 10 x 256 + 2 x 16 + 15 x 1
= 2560 + 32 + 15 = 2607

V 0.1 4

Base 10, Base 2, Base 16
The textbook uses subscripts to represent different
bases (ie. A2F16 , 953.7810, 1011.112)

I will use special symbols to represent the different bases.
The default base will be decimal, no special symbol for
base 10.

The ‘$’ will be used for base 16 ($A2F)
Will also use ‘h’ at end of number (A2Fh)

The ‘%’ will be used for base 2 (%10101111)

If ALL numbers on a page are the same base (ie, all in base
16 or base 2 or whatever) then no symbols will be used and
a statement will be present that will state the base (ie, all
numbers on this page are in base 16).

V 0.1 5

Common Powers
2-3 = 0.125
2-2 = 0.25
2-1 = 0.5
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 =32
26 = 64
27 = 128
28 = 256
29 = 512
210 = 1024
211 = 2048
212 = 4096

160 = 1 = 20

161 = 16 = 24

162 = 256 = 28

163 = 4096 = 212

210 = 1024 = 1 K
220 = 1048576 = 1 M (1 Megabits) = 1024 K = 210 x 210

230 = 1073741824 = 1 G (1 Gigabits)

V 0.1 6

Conversion of Any Base to Decimal
Converting from ANY base to decimal is done by multiplying
each digit by its weight and summing.

% 1011.11 = 1x23 + 0x22 + 1x21 + 1x20 + 1x2-1 + 1x2-2

= 8 + 0 + 2 + 1 + 0.5 + 0.25
= 11.75

Binary to Decimal

Hex to Decimal

A2Fh = 10x162 + 2x161 + 15x160

= 10 x 256 + 2 x 16 + 15 x 1
= 2560 + 32 + 15 = 2607

2

V 0.1 7

Conversion of Decimal Integer
To ANY Base

Divide Number N by base R until quotient is 0. Remainder at
EACH step is a digit in base R, from Least Significant digit to
Most significant digit.

Convert 53 to binary
53/2 = 26, rem = 1
26/2 = 13, rem = 0
13/2 = 6 , rem = 1
6 /2 = 3, rem = 0
3/2 = 1, rem = 1
1/2 = 0, rem = 1

53 = % 110101
= 1x25 + 1x24 + 0x23 + 1x22 + 0x21 + 1x20

= 32 + 16 + 0 + 4 + 0 + 1 = 53

Least Significant Digit

Most Significant Digit

V 0.1 8

Least Significant Digit
Most Significant Digit

53 = % 110101

Most Significant Digit
(has weight of 25 or
32). For base 2, also
called Most Significant
Bit (MSB). Always
LEFTMOST digit.

Least Significant Digit
(has weight of 20 or 1).
For base 2, also called
Least Significant Bit
(LSB). Always
RIGHTMOST digit.

V 0.1 9

More Conversions
Convert 53 to Hex

53/16 = 3, rem = 5
3 /16 = 0 , rem = 3
53 = 35h

= 3 x 161 + 5 x 160

= 48 + 5 = 53

V 0.1 10

Hex (base 16) to Binary Conversion

Each Hex digit represents 4 bits. To convert a Hex number to
Binary, simply convert each Hex digit to its four bit value.

Hex Digits to binary:
$ 0 = % 0000
$ 1 = % 0001
$2 = % 0010
$3 = % 0011
$4 = % 0100
$5 = % 0101
$6 = % 0110
$7 = % 0111
$8 = % 1000

Hex Digits to binary (cont):
$ 9 = % 1001
$ A = % 1010
$ B = % 1011
$ C = % 1100
$ D = % 1101
$ E = % 1110
$ F = % 1111

V 0.1 11

Hex to Binary, Binary to Hex

A2Fh = % 1010 0010 1111

345h = % 0011 0100 0101

Binary to Hex is just the opposite, create groups of 4 bits
starting with least significant bits. If last group does not
have 4 bits, then pad with zeros for unsigned numbers.

% 1010001 = % 0101 0001 = 51h

Padded with a zero

V 0.1 12

A Trick!
If faced with a large binary number that has to be
converted to decimal, I first convert the binary number
to HEX, then convert the HEX to decimal. Less work!

% 110111110011 = % 1101 1111 0011
= D F 3
= 13 x 162 + 15 x 161 + 3x160

= 13 x 256 + 15 x 16 + 3 x 1
= 3328 + 240 + 3
= 3571

Of course, you can also use the binary, hex conversion feature
on your calculator. Too bad calculators won’t be allowed on
the first test, though…...

3

V 0.1 13

Binary Numbers Again

Recall than N binary digits (N bits) can represent unsigned
integers from 0 to 2N-1.

4 bits = 0 to 15
8 bits = 0 to 255
16 bits = 0 to 65535

Besides simply representation, we would like to also do
arithmetic operations on numbers in binary form.
Principle operations are addition and subtraction.

V 0.1 14

Binary Arithmetic, Subtraction
The rules for binary arithmetic
are:

0 + 0 = 0, carry = 0

1 + 0 = 1, carry = 0

0 + 1 = 1, carry = 0

1 + 1 = 0, carry = 1

The rules for binary subtraction
are:

0 - 0 = 0, borrow = 0

1 - 0 = 1, borrow = 0

0 - 1 = 1, borrow = 1

1 - 1 = 0, borrow = 0

Borrows, Carries from digits to left of current of digit.

Binary subtraction, addition works just the same as
decimal addition, subtraction.

V 0.1 15

Binary, Decimal addition

34

+ 17

51
from LSD to MSD:
7+4 = 1; with carry out of 1
to next column

1 (carry) + 3 + 1 = 5.
answer = 51.

Decimal
% 101011

+ % 000001

101100
From LSB to MSB:
1+1 = 0, carry of 1
1 (carry)+1+0 = 0, carry of 1
1 (carry)+0 + 0 = 1, no carry
1 +0 = 1
0 + 0 = 0
1 + 0 = 1
answer = % 101100

Binary

V 0.1 16

Subtraction
Decimal

900

- 001

899

0-1 = 9; with borrow of 1
from next column
0 -1 (borrow) - 0 = 9, with
borrow of 1
9 - 1 (borrow) - 0 = 8.
Answer = 899.

Binary

% 100

- % 001

011

0-1 = 1; with borrow of 1
from next column
0 -1 (borrow) - 0 = 1, with
borrow of 1
1 - 1 (borrow) - 0 = 0.
Answer = % 011.

V 0.1 17

Hex Addition

3Ah

+ 28h

62h

A+8 = 2; with carry out of
1 to next column

1 (carry) + 3 + 2 = 6.
answer = $ 62.

3Ah = 3 x 16 + 10
= 58

28h = 2 x 16 + 8
= 40

58 + 40 = 98

62h = 6 x 16 + 2
= 96 + 2 = 98!!

Decimal check.

V 0.1 18

Hex addition again
Why is Ah + 8h = 2 with a carry out of 1?

The carry out has a weight equal to the BASE (in this case
16). The digit that gets left is the excess (BASE - sum).

Ah + 8h = 10 + 8 = 18.

18 is GREATER than 16 (BASE), so need a carry out!

Excess is 18 - BASE = 18 - 16 = 2, so ‘2’ is digit.

Exactly the same thing happens in Decimal.
5 + 7 = 2, carry of 1.
5 + 7 = 12, this is greater than 10!.
So excess is 12 - 10 = 2, carry of 1.

4

V 0.1 19

Hex Subtraction

34h

- 27h

0Dh

4-7 = D; with borrow of 1
from next column

3 - 1 (borrow) - 2 = 0.
answer = $ 0D.

34h = 3 x 16 + 4
= 52

27h = 2 x 16 + 7
= 39

52 - 39 = 13

0Dh = 13 !!

Decimal check.

V 0.1 20

Hex subtraction again

Why is 4h – 7h = $D with a borrow of 1?

The borrow has a weight equal to the BASE (in this case
16).

BORROW +4h – 7h = 16 + 4 -7 = 20 -7 = 13 = Dh.

Dh is the result of the subtraction with the borrow.

Exactly the same thing happens in decimal.
3 - 8 = 5 with borrow of 1
borrow + 3 - 8 = 10 + 3 - 8 = 13 - 8 = 5.

V 0.1 21

Fixed Precision
With paper and pencil, I can write a number with as many digits as
I want:

1,027,80,032,034,532,002,391,030,300,209,399,302,992,092,920
A microprocessor or computing system usually uses FIXED
PRECISION for integers; they limit the numbers to a fixed
number of bits:

$ AF4500239DEFA231 64 bit number, 16 hex digits
$ 9DEFA231 32 bit number, 8 hex digits
$ A231 16 bit number, 4 hex digits
$ 31 8 bit number, 2 hex digits

High end microprocessors use 64 or 32 bit precision; low end
microprocessors use 16 or 8 bit precision.

V 0.1 22

Unsigned Overflow
In this class I will use 8 bit precision most of the time, 16 bit
occassionally.

Overflow occurs when I add or subtract two numbers, and the
correct result is a number that is outside of the range of
allowable numbers for that precision. I can have both
unsigned and signed overflow (more on signed numbers later)

8 bits -- unsigned integers 0 to 28 -1 or 0 to 255.

16 bits -- unsigned integers 0 to 216-1 or 0 to 65535

V 0.1 23

Unsigned Overflow Example
Assume 8 bit precision; ie. I can’t store any more than 8 bits for
each number.

Lets add 255 + 1 = 256. The number 256 is OUTSIDE the
range of 0 to 255! What happens during the addition?

255 = $ FF

+ 1 = $ 01

256 /= $00

$F + 1 = 0, carry out
$F + 1 (carry) + 0 = 0, carry out
Carry out of MSB falls off end, No place to put it!!!
Final answer is WRONG because could not store carry out.

/= means Not Equal

V 0.1 24

Unsigned Overflow

A carry out of the Most Significant Digit (MSD) or Most
Significant Bit (MSB) is an OVERFLOW indicator for addition
of UNSIGNED numbers.

The correct result has overflowed the number range for that
precision, and thus the result is incorrect.

If we could STORE the carry out of the MSD, then the answer
would be correct. But we are assuming it is discarded because
of fixed precision, so the bits we have left are the incorrect
answer.

5

V 0.1 25

Signed Integer Representation
We have been ignoring large sets of numbers so far; ie. the sets of
signed integers, fractional numbers, and floating point numbers.

We will not talk about fractional number representation (10.3456)
or floating point representation (i.e. 9.23 x 1013).

We WILL talk about signed integer representation.

The PROBLEM with signed integers (- 45, + 27, -99) is the
SIGN! How do we encode the sign?

The sign is an extra piece of information that has to be encoded in
addition to the magnitude. Hmmmmm, what can we do??

V 0.1 26

Twos Complement Examples
-5 = % 11111011 = $ FB
+5 = % 00000101 = $ 05
+127 = % 01111111 = $ 7F
-127 = % 10000001 = $ 81
-128 = % 10000000 = $80 (note the extended range!)
+ 0 = % 00000000 = $ 00
- 0 = % 00000000 = $ 00 (only 1 zero!!!)

For 8 bits, can represent the signed integers -128 to +127.

For N bits, can represent the signed integers

-2(N-1) to + 2(N-1) - 1

Note that negative range extends one more than positive range.

V 0.1 27

Twos Complement Comments
Twos complement is the method of choice for representing signed
integers.

There is only one zero, and K + (-K) = 0.

-5 + 5 = $ FB + $ 05 = $00 = 0 !!!

Normal binary addition is used for adding numbers that represent
twos complement integers.

V 0.1 28

A common Question from Students
A question I get asked by students all the time is :

Given a hex number, how do I know if it is in 2’s complement
or 1’s complement; is it already in 2’s complement or do I have
put it in 2’s complement, etc, yadda,yadda, yadda….

If I write a HEX number, I will ask for a decimal representation
if you INTERPRET the encoding as a particular method (i.e,
either 2’s complement, 1’s complement, signed magnitude).

A Hex or binary number BY ITSELF can represent
ANYTHING (unsigned number, signed number, character code,
colored llamas, etc). You MUST HAVE additional information
that tells you what the encoding of the bits mean.

V 0.1 29

Example Conversions
$FE as an 8 bit unsigned integer = 254
$FE as an 8 bit twos complement integer = -2

$7F as an 8 bit unsigned integer = 127
$7f as an 8 bit twos complement integer = +127

To do hex to signed decimal conversion, we need to
determine sign (Step 1), determine Magnitude (step 2),
combine sign and magnitude (Step 3)

V 0.1 30

Hex to Signed Decimal Conversion Rules
Given a Hex number, and you are told to convert to a signed integer
(Hex number uses 2s complement encoding)

STEP 1: Determine the sign! If the Most Significant Bit is
zero, the sign is positive. If the MSB is one, the sign is
negative.

$F0 = % 11110000 (MSB is ‘1’), so sign of result is ‘-’
$64 = % 01100100 (MSB is ‘0’), so sign of result is ‘+’.

If the Most Significant Hex Digit is > 7, then MSB = ‘1’ !!!
(eg, $8,9,A,B,C,D,E,F => MSB = ‘1’ !!!)

6

V 0.1 31

Hex to Signed Decimal (cont)

STEP 2 (positive sign): If the sign is POSITIVE, then just
convert the hex value to decimal.

$64 is a positive number, decimal value is
6 x 16 + 4 = 100.

Final answer is +100.

$64 as an 8 bit twos complement integer = +100

V 0.1 32

Hex to Signed Decimal (cont)
STEP 2 (negative sign): If the sign is Negative, then need to
compute the magnitude of the number.

We will use the trick that - (-N) = + N
i.e. Take the negative of a negative number will give you the positive
number. In this case the number will be the magnitude.

For 2s complement representation, complement and add one.
$F0 = % 11110000 => %00001111 + 1 = %00010000 = $10 = 16

V 0.1 33

Hex to Signed Decimal (cont)

STEP 3 : Just combine the sign and magnitude to get the result.

$F0 as 8 bit twos complement number is -16

$64 as an 8 bit twos complement integer = +100

V 0.1 34

Signed Decimal to Hex conversion
2’s complement

Step 1: Ignore the sign, convert the magnitude of the number to
binary.

34 = 2 x 16 + 2 = $ 22 = % 00100010
20 = 1 x 16 + 4 = $ 14 = % 00010100

Step 2 (positive decimal number): If the decimal number was
positive, then you are finished!

+34 as an 8 bit 2s complement number is $ 22 = % 00100010

V 0.1 35

Signed Decimal to Hex conversion (cont)
Step 2 (negative decimal number): Need to do more if decimal
number was negative. To get the final representation, we will use
the trick that:

- (+N) = -N
i.e., if you take the negative of a positive number, get Negative
number.

For 2s complement, complement and add one.
20 = % 00010100 => %11101011 + 1 = %11101100 = $EC

V 0.1 36

Signed Decimal to Hex conversion (cont)

Final results:

+34 as an 8 bit 2s complement number is $ 22 = % 00100010

-20 as an 8 bit 2s complement number is $ EC = % 11101100

7

V 0.1 37

Two’s Complement Overflow
Consider two 8-bit 2’s complement numbers. I can represent
the signed integers -128 to +127 using this representation.

What if I do (+1) + (+127) = +128. The number +128 is
OUT of the RANGE that I can represent with 8 bits. What
happens when I do the binary addition?

+127 = $ 7F

+ +1 = $ 01

128 /= $80 (this is actually -128 as a twos
complement number!!! - the wrong answer!!!)

How do I know if overflowed occurred? Added two
POSITIVE numbers, and got a NEGATIVE result.

V 0.1 38

Detecting Two’s Complement Overflow

Two’s complement overflow occurs is:

Add two POSITIVE numbers and get a NEGATIVE result
Add two NEGATIVE numbers and get a POSITIVE result

I CANNOT get two’s complement overflow if I add a NEGATIVE
and a POSITIVE number together.

The Carry out of the Most Significant Bit means nothing if the
numbers are two’s complement numbers.

V 0.1 39

Some Examples

All hex numbers represent signed decimal in two’s complement
format.

$ FF = -1

+ $ 01 = + 1

$ 00 = 0

Note there is a carry out, but
the answer is correct. Can’t
have 2’s complement
overflow when adding
positive and negative
number.

$ FF = -1

+ $ 80 = -128

$ 7F = +127 (incorrect!!)

Added two negative
numbers, got a positive
number. Twos
Complement overflow.

V 0.1 40

Adding Precision (unsigned)

What if we want to take an unsigned number and add more
bits to it?

Just add zeros to the left.

128 = $80 (8 bits)
= $0080 (16 bits)
= $00000080 (32 bits)

V 0.1 41

Adding Precision (two’s complement)
What if we want to take a twos complement number and add
more bits to it?
Take whatever the SIGN BIT is, and extend it to the left.

-128 = $80 = % 10000000 (8 bits)
= $FF80 = % 1111111110000000 (16 bits)
= $FFFFFF80 (32 bits)

+ 127 = $7F = % 01111111 (8 bits)
= $007F = % 0000000001111111 (16 bits)
= $0000007F (32 bits)

This is called SIGN EXTENSION. Extending the MSB to
the left works for two’s complement numbers and unsigned
numbers. V 0.1 42

Binary Codes (cont.)
N bits (or N binary Digits) can represent 2N different values.

(for example, 4 bits can represent 24 or 16 different values)

N bits can take on unsigned decimal values from 0 to 2N-1.

Codes usually given in tabular form.

000
001
010
011
100
101
110
111

black
red
pink
yellow
brown
blue
green
white

8

V 0.1 43

Codes for Characters
Also need to represent Characters as digital data.
The ASCII code (American Standard Code for
Information Interchange) is a 7-bit code for Character
data. Typically 8 bits are actually used with the 8th bit
being zero or used for error detection (parity checking).
8 bits = 1 Byte. (see Table 2.5, pg 47, Uffenbeck).

‘A’ = % 01000001 = $41
‘&’ = % 00100110 = $26

7 bits can only represent 27 different values (128). This
enough to represent the Latin alphabet (A-Z, a-z, 0-9,
punctuation marks, some symbols like $), but what about
other symbols or other languages?

V 0.1 44

ASCII
American Standard Code for Information Interchange

V 0.1 45

UNICODE
UNICODE is a 16-bit code for representing alphanumeric data.
With 16 bits, can represent 216 or 65536 different symbols.
16 bits = 2 Bytes per character.

$0041-005A A-Z
$0061-4007A a-z

Some other alphabet/symbol ranges

$3400-3d2d Korean Hangul Symbols
$3040-318F Hiranga, Katakana, Bopomofo, Hangul
$4E00-9FFF Han (Chinese, Japenese, Korean)

UNICODE used by Web browsers, Java, most software these
days. V 0.1 46

Codes for Decimal Digits
There are even codes for representing decimal digits. These
codes use 4-bits for EACH decimal digits; it is NOT the same
as converting from decimal to binary.

BCD Code
0 = % 0000
1 = % 0001
2 = % 0010
3 = % 0011
4 = % 0100
5 = % 0101
6 = % 0110
7 = % 0111
8 = % 1000
9 = % 1001

In BCD code, each decimal digit simply
represented by its binary equivalent.

96 = % 1001 0110 = $ 96 (BCD code)

Advantage: easy to convert
Disadvantage: takes more bits to store a number:

255 = % 1111 1111 = $ FF (binary code)
255 = % 0010 0101 0101 = $ 255 (BCD code)

takes only 8 bits in binary, takes 12 bits in BCD.

V 0.1 47

Gray Code for decimal Digits

Gray Code
0 = % 0000
1 = % 0001
2 = % 0011
3 = % 0010
4 = % 0110
5 = % 1110
6 = % 1010
7 = % 1011
8 = % 1001
9 = % 1000

A Gray code changes by only 1 bit for
adjacent values. This is also called a
‘thumbwheel’ code because a thumbwheel
for choosing a decimal digit can only
change to an adjacent value (4 to 5 to 6,
etc) with each click of the thumbwheel.
This allows the binary output of the
thumbwheel to only change one bit at a
time; this can help reduce circuit
complexity and also reduce signal noise.

V 0.1 48

What do you need to Know?
• Convert hex, binary integers to Decimal
• Convert decimal integers to hex, binary
• Convert hex to binary, binary to Hex
• N binary digits can represent 2N values, unsigned

integers 0 to 2N-1.
• Addition, subtraction of binary, hex numbers
• Detecting unsigned overflow
• Converting a decimal number to Twos

Complement
• Converting a hex number in 2s complement to

decimal

9

V 0.1 49

What do you need to know? (cont)
• Number ranges for 2s complement
• Overflow in 2s complement
• Sign extension in 2s complement
• ASCII, UNICODE are binary codes for character

data
• BCD code is alternate code for representing

decimal digits
• Gray codes can also represent decimal digits;

adjacent values in Gray codes change only by one
bit.

