
1

V 0.1 1

C and Embedded Systems

• A µP-based system used in a device (i.e, a car engine)
performing control and monitoring functions is
referred to as an embedded system.
– The embedded system is invisible to the user
– The user only indirectly interacts with the embedded system

by using the device that contains the µP
• Most programs for embedded systems are written in C

– Portable – code can be retargeted to different processors
– Clarity – C is easier to understand than assembly
– compilers produce code that is close to manually-tweaked

assembly language in both code size and performance

V 0.1 2

So Why Learn Assembly Language?
• The way that C is written can impact assembly language size

and performance
– i.e., if the int data type is used where char would suffice, both

performance and code size will suffer.

• Learning the assembly language, architecture of the target µP
provides performance and code size clues for compiled C
– Does the uP have support for multiply/divide?
– Can it shift only one position each shift or multiple positions? (i.e,

does it have a barrel shifter?)
– How much internal RAM does the µP have?
– Does the µP have floating point support?

• Sometimes have to write assembly code for performance
reasons.

V 0.1 3

C Compilation C Code (.c)

Compiler

Assembly
(.asm, .as)

Machine code
(.obj)

general optimization
options, target µP

Assembler

Linker

Executable
(.hex)

µP-specific general
optimization

external libraries
(math, IO, etc)

This general tool chain is
used for all high-level
programming languages.

C is portable because a
different compiler can
target a different
processor. Generally,
some changes are always
required, just fewer
changes than if trying
port an assembly
language program to a
different processor.

Assembly language or
machine code is not
portable.

V 0.1 4

PICC Lite C Compiler
• Programs for hardware experiments (labs 6-13)

will be written in C
• Will use the PICC Lite C Compiler

– Demo version of professional C compiler from Hi-Tech
Software (www.htsoft.com)

– Excellent compiler, generates very good code

• When creating a project, select the “Hi-Tech PICC
Toolsuite” as the language toolsuite
– See Experiment #5 in Lab manual for full instructions

on using PICC Lite

V 0.1 5

PICC C Optimizations
By default, all code optimizations are turned off in during
compilation.

To enable assembly level optimizations (-O flag), do
Project →Build →Options Project

to open the build options window. Click on the PICC Compiler
tab.

Check this to enable
the –O option

Set value between 1
(lowest effort) to 9
(highest effort).
Generally, > 3 does
not help much.

V 0.1 6

PICC Lite C Optimization Results
(Lab #13)

76941198-O –Zg3
Level 3 global
optimization

1198

1228

1425

Code Size
(words)

7694-O –Zg9
Level 9 global
optimization

7694-O

7694None (default)

Bank 1 Ram
(bytes)

Bank 0 Ram
(bytes)

Optimization

2

V 0.1 7

Referring to Special Registers

PORTB = 0x80;

#include <pic.h>

Must have this include statement at top of each file. Will include
a processor-specific header file based on device chosen in
MPLAB.

This header file contains #defines for all special registers:

#static volatile unsigned char PORTB @ 0x06;

special
register

found in pic1687x.h in PICC
Lite installation directory

memory
location in
PIC

In C code, can refer to special register
using the register name

V 0.1 8

bittst, bitclr, bitset Macros
#define bitset(var,bitno) ((var) |= (1 << (bitno)))

#define bitclr(var,bitno) ((var) &= ~(1 << (bitno)))

#define bittst(var,bitno) (var & (1 << (bitno)))

Include these utility C macros at the top of all of your C files (does
not matter where, just have them defined before you use them).

Example usage:
bitset(PORTB,7); /* MSB ← 1 */

bitclr(PORTB,0); /* LSB ← 0 */

if (bittst(PORTB, 0)) {
/* do something */

}

Under PICC Lite,
these macros compile
to the equivalent PIC
bsf, bcf, btfsc, btfss
instructions.

V 0.1 9

PICF16873

Hardware lab
exercises will use the
PICF16873 (28-pin
DIP)

Note that most pins
have multiple
functions.

Pin functions are
controlled via special
registers in the PIC.

In-Circuit Programming
(ICP) will be used to
program memory contents
from a PC without
removing the device from
the protoboard.

V 0.1 10

Initial Hookup

7805

Pwr
Conn

Wall
Xfmr

9V 5V
16F873

Vdd

Vss
1.0µ

Vpp/
Mclr

Vpp/Mclr Vdd

Vss

RB7/
PGD

RB6/
PGC

Note polarity of LED!!
Should turn on when
reset button is pressed.

RB7/
PGD

RB6/
PGC

Use 5-pin header for ISP connector.
The ordering of the pins is up to you,
but the picture in the prototyping
appendix has 1-to-5, right to left.

If there are multiple
VDD/VSS pins on
your PIC, hook them
all up!!!

RB1

10K
ohm

Reset
Switch

Oscillator

OE Vdd

5V

Vss Out
Osc1/
Clkin

470 ohm

470 ohm
Power on
LED

+

V 0.1 11

Powering the
PIC

7805

Pwr
Conn

Wall
Xfmr

9V 5V
16F873

Vdd

Vss
1.0µ

470 ohm
Power on
LED

+

Wall transformer provides 9V DC unregulated (unregulated
means that voltage can vary significantly depending on current
being drawn). Maximum current from Xfmr is 650 mA.

The 7805 voltage regulator provides a regulated +5V. Voltage
will stay stable up to maximum current rating of device.

With writing on device visible, input pin
(+9 v) is left side, middle is ground, right
pin is +5V regulated output voltage.

V 0.1 12

Aside: How does an LED work?
5V

470
ohm

Power on
LED

Anode (long lead)

Cathode (short lead)

A diode will conduct current (turn on) when the anode is at
approximately 0.7V higher than the cathode. A Light
Emitting Diode (LED) emits visible light when conducting
– the brightness is proportional to the current flow.

current limiting resistor

Current = Voltage/Resistance ~ (5v – 0.7v)/470 Ω = 9.1 mA

3

V 0.1 13

In-Circuit Programming

16F873

Vdd

Vss
1.0µ

Vpp/
Mclr

Vpp/Mclr Vdd

Vss

RB7/
PGD

RB6/
PGC

RB7/
PGD

RB6/
PGC

10K
ohm

Reset
Switch

+

+5V

modular
cable

ICD-2
programmer

During programming,
this pin will have +12 V.

This diode is very important – it protects the other devices
connected to the +5V supply from the +12 V that is applied during
programming. The diode does not conduct if the cathode voltage >
anode voltage. Be sure you have the polarity correct; the diode should
turn on (dimly) when the reset button pressed.

Picture stolen from microchip WWW site.
V 0.1 14

Reset

16F873

Vdd

Vss
1.0µ

Vpp/
Mclr

10K ohm

Reset
Switch

+

+5V

When reset button
is pressed, the
Vpp/Mclr pin is
brought to ground.
This causes the PIC
program counter to
be reset to 0, so
next instruction
fetched will be
from location 0. All
µPs have a reset
line in order to
force the µP to a
known state.

10K resistor used to limit current
when reset button is pressed.
Diode will be very dim when
reset switch is pressed because
current ~ 0.5 mA

V 0.1 15

The Clock
14.7456 MHz
Oscillator

OE Vdd

5V

Vss Out Osc1/Clkin

16F873

Will use an external oscillator IC to provide the clock for the PIC.
The ‘weird’ frequency provides common baud rates for serial
communication when divided down internally.

The internal instruction frequency is:
14.7456 MHz /4 = 3.6863 MHz

The PIC can also use an external RC network (cheap, but not very
accurate) or an external crystal (more components, usually needs
two external capacitors as well).

V 0.1 16

Configuration Word
The configuration word contains 13 bits that specifies various
PIC processor options that affect operation. This is located in
Program memory, so cannot be modified after startup.

If these lower 2 bits are 01 (XT option), then PIC will
expect an external oscillator to provide the clock.

We will discuss the meaning of the other options as it is
necessary.

V 0.1 17

Setting the Configuration Word
#define DATA_EEMEM_PROTECT_DISABLE 0x0100
#define XT_OSC 0x0001
#define DISABLE_DEBUG 0x0800

#define CP0 0x1010
#define CP1 0x2020

/* CP0,CP1 code protect off*/
/* other bits zero which means WDT disabled

Low Voltage prm disabled, brownout disabled
power up timer enabled */

__CONFIG((CP1 | CP0) | DATA_EEMEM_PROTECT_DISABLE |
XT_OSC | DISABLE_DEBUG);

This C code causes the configuration word to be programmed
as 0x3931. This is what should be used for all hardware labs
unless specified otherwise.

V 0.1 18

Parallel Port I/O
The simplest type of I/O via the PIC external pins is
parallel port I/O.

The PICF873 has three parallel ports:

PORTA – 6 bits, bidirectional
PORTB – 8 bits, bidirectional (except RB0, input only)
PORTC – 8 bits, bidirectional

We will use PORTB pins most of the time because the PORTA,
PORTC pins will be used for other functions beside parallel I/O.

Each pin on these ports can either be an input or output – the
data direction is controlled by the corresponding bit in the
TRISA, TRISB, TRISC registers (‘1’ = input, ‘0’ = output).

4

V 0.1 19

PORTB Example
Set the upper four bits of PORTB to outputs, lower
four bits to be inputs:

TRISB = 0x0f;

Drive RB4, RB5 high; RB6, RB7 low:

PORTB = 0x30;

Wait until input RB2 is high:

while (!bittst(PORTB,2)) ;

Wait until input RB3 is high:
while (bittst(PORTB,3)) ;

V 0.1 20

Switch Input

16F873

RB3

Vdd

10K

External pullup

When switch is
pressed RB3 reads as
‘0’, else reads as ‘1’.

If pullup not present,
then input would float
when switch is not
pressed, and input
value may read as ‘0’
or ‘1’ because of
system noise.

V 0.1 21

PORTB Pin Diagram
If TRIS bit a 0, output
active

If pin is programmed to
be an OUTPUT (TRIS bit
= 0), and a read is done,
will read the last value
written to the PORT.

If pin is programmed to
be in INPUT (TRIS bit =
1), will always read what
the external pin digital
value is. A write to an
input pin has no effect. V 0.1 22

Aside: Tri-State Buffer (TSB) Review

Output Enable
(OE) of TSB. If
asserted, output =
input. If negated,
output is high
impedance
(output
disconnected)

A tri-state buffer (TSB) has input, output, and output-
enable (OE) pins. Output can either be ‘1’, ‘0’ or ‘Z’
(high impedance).

A
OE

Y YA

OE = 0, then switch closed
OE = 1, then switch open

OE

V 0.1 23

PORTB weak pullups
Can enable weak pullups on all
RB pins configured to be inputs
by clearing the RBPU bit in the
OPTION register

bitclr(OPTION,7);

Removes the need for an
external pullup. V 0.1 24

PORTA Parallel IO
On the PIC16F873, the PORTA RA0:RA3 and RA5 pins are
also used for as the inputs to the analog-to-digital converter
module.

By default, they are analog input pins, not bi-directional
digital I/O pins. If a read is done on these pins while they are
configured as analog inputs, a ‘0’ will always be returned.

To enable RA0:RA3, RA5 pins to functions as digital pins,
the ADCON1 (A/D configuration register) must be set to the
value 0x06:

/* configure port A to be all digital inputs */
TRISA = 0xff;
ADCON1 = 0x06;

5

V 0.1 25

PORT A Pin Configuration
Bits 3:0 of
ADCON1
control the
configuration
of the
PORTA pins
in terms of
digital vs.
analog.

The datasheet
in the A/D
section has a
complete
description.

V 0.1 26

RA4 Pin: Open Drain Output
RA4 is different from RA0:RA3, RA5 in that it is an open drain
output. RA4 can only pull LOW, it cannot pull high.

P/N transistors both present, can
pull high/low

Only N present, can only
pull low

V 0.1 27

Aside: P/N CMOS Transistor Review
A ‘0’ (Vss) on gate
turns this device on,
pulls output up to
VDD

A ‘1’ (VDD) on gate
turns this device on,
pulls output down to
VSS

The logic that drives
the gate inputs of the
P/N transistors will
never turn both
transistors on at the
same time.

drain (D)

source (S)

gate
(G)

V 0.1 28

Why Open Drain? Useful because can tie open-drain
outputs together without external logic,
only an external pullup.

Assume CPUs A,B,C are all working on
different tasks, and want to know when
all are finished.

When working on a task, a CPU asserts
RA4 low. When finished, negate RA4.
If any CPU is busy, LED will turn on. If
all CPUs finished, LED will turn off.

Cannot do this with non-open drain
output because of clash of some outputs
driving low, some high.

This type of connection is often called a
wired-or. If CPU A or B or C is busy,
then LED is on.

16F873

RA4

Vdd

16F873
RA4

16F873
RA4

Busy
LEDCPU A

CPU B

CPU C

V 0.1 29

PORTC Parallel IO

• We will not look at PORTC Parallel IO
• PORTC pins shared with many other functions of

the PICF873
• If parallel IO is needed, will always use PORTB

first, then PORTA if needed
– Do not use RB0 because this pin has a special interrupt

function.

V 0.1 30

What do you have to know?

• How LEDs, Switches work
• How pullup resistors work and when they are

needed.
• How to use an external oscillator with the PIC
• Parallel port usage of PORTA, PORTB
• How to use the weak pullups of PORTB
• How N/P type transistors work
• How a Tri-state buffer works
• How an open-drain output works and what it is

useful for

